精英家教网 > 高中数学 > 题目详情
在下列条件中,可判断平面与平面平行的是(  )
A.都垂直于平面
B.内存在不共线的三点到平面的距离相等
C.内两条直线,且
D.是两条异面直线,且
D
解:因为利用面面平行的判定定理可知,当是两条异面直线,且时,符合题意,成立,选D,而A,B,C不一定成立。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(13分) 如图,直三棱柱中, ,.
(Ⅰ)证明:
(Ⅱ)求二面角的正切值.
 

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)如图,在四棱柱中,侧面⊥底面,底面为直角梯形,其中
,O为中点.

(Ⅰ)求证:平面 ;
(Ⅱ)求锐二面角A—C1D1—C的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分12分)如图,底面为菱形的四棱锥P-ABCD中,∠ABC=60°,AC="1," PA="2," PB=PD=,点M是PD的中点.

(Ⅰ)证明:PA⊥平面ABCD;
(Ⅱ)若AN为PD边的高线,求二面角M-AC-N的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分9分)
如图,在三棱柱ABC-A1B1C1中,CC1⊥底面ABC,AC=3,BC=4,AB=5,点D是AB的中点.

(1)求证AC⊥BC1
(2)求证AC1∥平面CDB1

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分12分)如图5,已知直角梯形所在的平面垂直于平面

.  
(1)在直线上是否存在一点,使得
平面?请证明你的结论;
(2)求平面与平面所成的锐二面角的余弦值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(14分)如图所示,在四面体中,已知
,,,是线段上一点,
,点在线段上,且

⑴证明
⑵求二面角的平面角的正弦值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,M是正方体的棱的中点,给出命题

①过M点有且只有一条直线与直线都相交;
②过M点有且只有一条直线与直线都垂直;
③过M点有且只有一个平面与直线都相交;
④过M点有且只有一个平面与直线都平行.
其中真命题是(   )
A.②③④B.①③④C.①②④D.①②③

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图所示的七面体是由三棱台ABC – A1B1C1和四棱锥D- AA1C1C对接而成,四边形ABCD是边长为2的正方形,BB1⊥平面ABCD,BB1=2A1B1=2.

(I)求证:平面AA1C1C1⊥平面BB1D;
(Ⅱ)求二面角A –A1D—C1的余弦值.

查看答案和解析>>

同步练习册答案