精英家教网 > 高中数学 > 题目详情
如图,M是正方体的棱的中点,给出命题

①过M点有且只有一条直线与直线都相交;
②过M点有且只有一条直线与直线都垂直;
③过M点有且只有一个平面与直线都相交;
④过M点有且只有一个平面与直线都平行.
其中真命题是(   )
A.②③④B.①③④C.①②④D.①②③
C
解:直线AB与B1C1是两条互相垂直的异面直线,点M不在这两异面直线中的任何一条上,如图所示:
取C1C的中点N,则MN∥AB,且 MN=AB,设BN 与B1C1交于H,则点 A、B、M、N、H 共面,
直线HM必与AB直线相交于某点O.
所以,过M点有且只有一条直线HO与直线AB、B1C1都相交;故①正确.
过M点有且只有一条直线与直线AB、B1C1都垂直,此垂线就是棱DD1,故②正确.
过M点有无数个平面与直线AB、B1C1都相交,故 ③不正确.
过M点有且只有一个平面与直线AB、B1C1都平行,此平面就是过M点与正方体的上下底都平行的平面,故④正确.
综上,①②④正确,③不正确,
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥P-ABCD中,底面ABCD为直角梯形,AD//BC,∠ADC=90°平面PAD⊥底面ABCD,Q为AD的中点,M是棱PC上的点,PA=PD=2,BC=AD=1,CD=.

(Ⅰ)求证:平面PQB⊥平面PAD;
(Ⅱ)设PM="t" MC,若二面角M-BQ-C的平面角的大小为30°,试确定t的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题10分)已知正方体是底对角线的交点.

求证:(1)∥面
(2 ). 

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分14分),P、E在同侧,连接PE、AE.

求证:BC//面APE;
设F是内一点,且,求直线EF与面APF所成角的大小                                                   

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图,在四棱锥中,底面是矩形,平面
是线段上的点,是线段上的点,且

(Ⅰ)当时,证明平面
(Ⅱ)是否存在实数,使异面直线所成的角为?若存在,试求出的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知,则的位置关系是_______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在下列条件中,可判断平面与平面平行的是(  )
A.都垂直于平面
B.内存在不共线的三点到平面的距离相等
C.内两条直线,且
D.是两条异面直线,且

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥中,平面,底面是直角梯形,中点.

(1) 求证:平面PDC平面PAD;
(2) 求证:BE∥平面PAD;
(3)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知直线平面,直线平面,则下列四个命题中正确的是 (  )
;③;④
A.②④B.①②C.③④D.①③

查看答案和解析>>

同步练习册答案