精英家教网 > 高中数学 > 题目详情
(本题满分12分)如图5,已知直角梯形所在的平面垂直于平面

.  
(1)在直线上是否存在一点,使得
平面?请证明你的结论;
(2)求平面与平面所成的锐二面角的余弦值。
(1)见解析;(2)
本试题主要是考查了立体几何中线面平行和二面角的平面角的大小。
(1)通过线面平行的判定定理,来得到证明。
(2)利用三垂线定理得到二面角的大小,进而利用解三角形得到结论。
解:(1)线段的中点就是满足条件的点.…1分
证明如下:
的中点,连结,则
,    …………………2分
的中点,连结

∴△是正三角形,∴
∴四边形为矩形,∴.又∵
,四边形是平行四边形.…………4分
,而平面平面
平面.…………6分

(2)
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)如图,在四棱锥P-ABCD中,PD⊥平面ABCD,PD=DC=BC=1,AB=2,AB∥DC,∠BCD=90°.
(1)求证:PC⊥BC;
(2)求点A到平面PBC的距离.
 

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题10分)已知正方体是底对角线的交点.

求证:(1)∥面
(2 ). 

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题12分)如图所示,在直四棱柱中, ,点是棱上一点.

(1)求证:
(2)求证:

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在下列条件中,可判断平面与平面平行的是(  )
A.都垂直于平面
B.内存在不共线的三点到平面的距离相等
C.内两条直线,且
D.是两条异面直线,且

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥中,平面,底面是直角梯形,中点.

(1) 求证:平面PDC平面PAD;
(2) 求证:BE∥平面PAD;
(3)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知直线平面,直线平面,则下列四个命题中正确的是 (  )
;③;④
A.②④B.①②C.③④D.①③

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图所示,E、F分别是正方形SD1DD2的边D1D、DD2的中点沿SE,SF,EF将其折成一个几何体,使D1,D,D2重合,记作D。给出下列位置关系:①SD⊥面DEF;  ②SE⊥面DEF; ③DF⊥SE;  ④EF⊥面SED,其中成立的有           

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(13分)如图分别是正三棱台ABC-A1B1C1的直观图和正视图,O,O1分别是上下底面的中心,E是BC中点.
(1)求正三棱台ABC-A1B1C1的体积;
(2)求平面EA1B1与平面A1B1C1的夹角的余弦;
(3)若P是棱A1C1上一点,求CP+PB1的最小值.

查看答案和解析>>

同步练习册答案