分析 构造函数g(x)=f(x)-3x-1,求函数的导数,判断函数的单调性 即可得到结论.
解答 解:设t=lnx,
则不等式f(lnx)>3lnx+1等价为f(t)>3t+1,
设g(x)=f(x)-3x-1,
则g′(x)=f′(x)-3,
∵f(x)的导函数f′(x)<3,
∴g′(x)=f′(x)-3<0,此时函数单调递减,
∵f(1)=4,
∴g(1)=f(1)-3-1=0,
则当x>1时,g(x)<g(1)=0,
即g(x)<0,则此时g(x)=f(x)-3x-1<0,
即不等式f(x)>3x+1的解为x<1,
即f(t)>3t+1的解为t<1,
由lnx<1,解得0<x<e,
即不等式f(lnx)>3lnx+1的解集为(0,e),
故答案为:(0,e).
点评 本题主要考查不等式的求解,根据条件构造函数,利用函数的单调性和导数之间的关系是解决本题的关键,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{3}$ | B. | $\frac{2}{5}$ | C. | $\frac{3}{5}$ | D. | $\frac{2}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | A=R,B={x|x>0},f:x→y=|x| | B. | A=Z,B=N*,f:x→y=x2 | ||
| C. | A=Z,B=Z,f:x→y=$\sqrt{x}$ | D. | A=[-1,1],B={0},f:x→y=0 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com