精英家教网 > 高中数学 > 题目详情

【题目】市政府为了促进低碳环保的出行方式,从全市在册的50000辆电动车中随机抽取100辆,委托专业机构免费为它们进行电池性能检测.电池性能分为需要更换、尚能使用、较好、良好四个等级,并分成电动自行车和电动汽车两个群体分别进行统计,样本分布如下图.

(1)从电池性能较好的电动车中,采用分层抽样的方法随机抽取了9辆,求再从这9辆电动车中随机抽取2辆,至少有1辆为电动汽车的概率;

(2)为提高市民对电动车的使用热情,市政府准备为电动车车主一次性发放补助,标准如下:

①电动自行车每辆补助300元;

②电动汽车每辆补助500元;

③对电池需要更换的电动车每辆额外补助400元.

利用样本估计总体,试估计市政府执行此方案的预算(单位:万元).

【答案】(1);(2)2080

【解析】

(1) 根据分层抽样的原理,电动自行车应抽取(辆),电动汽车应抽取(辆),由古典概型以及对立事件概率公式可得,所求概率;(2)设电动车车主能得到的补助为元,则可取结合组合知识,利用古典概型概率公式,求出各随机变量对应的概率,从而可得分布列,进而利用期望公式可得的数学期望.

(1)根据分层抽样的原理,电动自行车应抽取(辆),

电动汽车应抽取(辆),

则所求概率.

(2)设电动车车主能得到的补助为元,则可取.

,其分布列如下:

300

500

700

900

电动车车主得到的补助的期望

则估计市政府执行此方案的预算为元.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)当时,求曲线在点处的切线方程;

(2)求函数f(x)的极值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若一条直线与一个平面垂直,则称此直线与平面构成一个“正交线面对”.那么在一个正方体中,由两个顶点确定的直线与含有四个顶点的平面构成的“正交线面对”的个数是( )

A. 48 B. 36 C. 24 D. 18

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】通过随机询问110名性别不同的大学生是否爱好体育,得到表:

参照附表,得到的正确结论是  

附:由公式算得:

附表:

0.25

0.15

0.10

0.05

0.025

0.010

0.005

1.323

2.702

2.706

3.841

5.024

6.635

7.879

A. 以上的把握认为“爱好体育运动与性别有关”

B. 以上的把握认为“爱好体育运动与性别无关”

C. 在犯错误的概率不超过的前提下,认为“爱好体育运动与性别有关”

D. 在犯错误的概率不超过的前提下,认为“爱好体育运动与性别无关”

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在长方体中,写出所有

1)与直线AB平行的直线,并用“∥”表示;

2)与直线异面的直线;

3)与直线AB平行的平面,并用合适的符号表示;

4)与平面平行的平面,并用合适的符号表示;

5)与直线AD垂直的平面,并用合适的符号表示.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四棱锥中,底面为正方形,.

(1)证明:面

(2)若与底面所成的角为,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知三棱锥(如图1)的平面展开图(如图2)中,四边形为边长等于的正方形,均为正三角形,在三棱锥中:

1)证明:平面平面

2)若点在棱上运动,当直线与平面所成的角最大时,求二面角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,直四棱柱ABCDA1B1C1D1的底面是菱形,AA1=4AB=2,∠BAD=60°,EMN分别是BCBB1A1D的中点.

1)证明:MN∥平面C1DE

2)求AM与平面A1MD所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某中学在高二下学期开设四门数学选修课,分别为《数学史选讲》.《球面上的几何》.《对称与群》.《矩阵与变换》.现有甲.乙.丙.丁四位同学从这四门选修课程中选修一门,且这四位同学选修的课程互不相同,下面关于他们选课的一些信息:①甲同学和丙同学均不选《球面上的几何》,也不选《对称与群》:②乙同学不选《对称与群》,也不选《数学史选讲》:③如果甲同学不选《数学史选讲》,那么丁同学就不选《对称与群》.若这些信息都是正确的,则丙同学选修的课程是(  )

A. 《数学史选讲》B. 《球面上的几何》C. 《对称与群》D. 《矩阵与变换》

查看答案和解析>>

同步练习册答案