ÉèÊýÁÐ{an}µÄǰnÏîºÍΪSn£¬Èô¶ÔÓÚÈÎÒâµÄn¡ÊN*,¶¼ÓÐSn=2an-3n,

(1)ÇóÊýÁÐ{an}µÄÊ×ÏîÓëµÝÍÆ¹ØÏµÊ½an+1=f(an);

(2)ÏÈÔĶÁÏÂÃæ¶¨Àí£¬ÈôÊýÁÐ{an}ÓеÝÍÆ¹ØÏµan+1=Aan+B,ÆäÖÐA¡¢BΪ³£Êý£¬ÇÒA¡Ù1,B¡Ù0,ÔòÊýÁÐ{an-}ÊÇÒÔAΪ¹«±ÈµÄµÈ±ÈÊýÁУ¬ÇëÄãÔÚµÚ£¨1£©ÌâµÄ»ù´¡ÉÏÓ¦Óñ¾¶¨Àí£¬ÇóÊýÁÐ{an}µÄͨÏʽ;

(3)ÇóÊýÁÐ{an}µÄǰnÏîºÍSn.

½âÎö£º(1)¡ßSn=2an-3n,

¡àSn+1=2an+1-3(n+1).

¡àan+1=Sn+1-Sn=2an+1-2an-3.

¹Êan+1=f(an)=2an+3.

(2)¡ßan+1+3=2(an+3),

¡à{an+3}ΪµÈ±ÈÊýÁУ¬Ê×ÏîΪa1+3=6,¹«±ÈΪ2£¬¹Êan+3=6¡Á2n-1=3¡Á2n.

¡àan=3¡Á2n-3.

(3)Sn=a1+a2+a3+¡­+an

=3(2+22+¡­+2n)-3n

=3¡Á2n+1-6-3n.

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÉèÊýÁÐ{an}µÄǰnÏîµÄºÍΪSn£¬ÇÒSn=3n+1£®
£¨1£©ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨2£©Éèbn=an£¨2n-1£©£¬ÇóÊýÁÐ{bn}µÄǰnÏîµÄºÍ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÉèÊýÁÐanµÄǰnÏîµÄºÍΪSn£¬a1=
3
2
£¬Sn=2an+1-3
£®
£¨1£©Çóa2£¬a3£»
£¨2£©ÇóÊýÁÐanµÄͨÏʽ£»
£¨3£©Éèbn=(2log
3
2
an+1)•an
£¬ÇóÊýÁÐbnµÄǰnÏîµÄºÍTn£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÉèÊýÁÐ{an}µÄǰnÏîºÍSn=2an+
3
2
¡Á£¨-1£©n-
1
2
£¬n¡ÊN*£®
£¨¢ñ£©ÇóanºÍan-1µÄ¹ØÏµÊ½£»
£¨¢ò£©ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨¢ó£©Ö¤Ã÷£º
1
S1
+
1
S2
+¡­+
1
Sn
£¼
10
9
£¬n¡ÊN*£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

²»µÈʽ×é
x¡Ý0
y¡Ý0
nx+y¡Ü4n
Ëù±íʾµÄÆ½ÃæÇøÓòΪDn£¬ÈôDnÄÚµÄÕûµã£¨Õûµã¼´ºá×ø±êºÍ×Ý×ø±ê¾ùΪÕûÊýµÄµã£©¸öÊýΪan£¨n¡ÊN*£©
£¨1£©Ð´³öan+1ÓëanµÄ¹ØÏµ£¨Ö»Ðè¸ø³ö½á¹û£¬²»ÐèÒª¹ý³Ì£©£¬
£¨2£©ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨3£©ÉèÊýÁÐanµÄǰnÏîºÍΪSnÇÒTn=
Sn
5•2n
£¬Èô¶ÔÒ»ÇеÄÕýÕûÊýn£¬×ÜÓÐTn¡Üm³ÉÁ¢£¬ÇómµÄ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2013•Ö£ÖÝһ죩ÉèÊýÁÐ{an}µÄǰnÏîºÍSn=2n-1£¬Ôò
S4
a3
µÄֵΪ£¨¡¡¡¡£©

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸