精英家教网 > 高中数学 > 题目详情
6.△ABC中,中线AD、BE交于点G,FG∥AC,求$\frac{DF}{BD}$,$\frac{DF}{BC}$,$\frac{GF}{EC}$

分析 求得G为△ABC的重心,$\frac{GF}{EC}$=$\frac{2}{3}$=$\frac{BF}{BC}$,即可得出结论.

解答 解:∵△ABC中,中线AD、BE交于点G,
∴G为△ABC的重心,
∴$\frac{GF}{EC}$=$\frac{2}{3}$=$\frac{BF}{BC}$,
∴$\frac{DF}{BD}$=$\frac{\frac{1}{2}BC-\frac{1}{3}BC}{\frac{1}{2}BC}$=$\frac{1}{3}$,$\frac{DF}{BC}$=$\frac{1}{6}$.

点评 本题考查三角形重心的性质,考查学生分析解决问题的能力,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.已知双曲线$\frac{{x}^{2}}{16}$-$\frac{{y}^{2}}{9}$=1上一点M到右焦点F1的距离为6,N为MF1的中点,O为坐标原点,则ON=7.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知双曲线Γ:$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1(a>0,b>0)的离心率为2,过双曲线Γ的左焦点F作圆O:x2+y2=a2的两条切线,切点分别为A、B,则∠AFB=60°.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,在平行四边形么BCD中,∠DAB=60°,AD=4,AB=2,将△CBD沿BD折起到△EBD的位置.
(Ⅰ)求证:BD⊥平面CDE;
(Ⅱ)当∠CDE取何值时,三棱锥E-ABD的体积取最大值?并求此时三棱锥E-ABD的侧面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=lnx,g(x)=$\frac{t}{x}$-lnx.
(1)如果函数g(x)≤f(x)恒成立,求t的取值范围;
(2)设函数F(x)=f(x)-$\frac{1}{{e}^{x}}$+$\frac{2}{ex}$.试问函数F(x)是否存在零点,若存在,求出零点个数,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,长方体ABCD-A1B1C1D1中,AB=BC=$\frac{1}{2}A{A}_{1}$=a,E是AA1中点;
(Ⅰ)证明:A1B1∥平面CDE;
(Ⅱ) 证明:D1E⊥平面CDE;
(Ⅲ)求三棱锥D1-CDE的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知复数z=1-i,$\overline{z}$为z的共轭复数,则下列结论正确的是(  )
A.$\overline{z}$=-1-iB.|$\overline{z}$|=$\sqrt{2}$C.|$\overline{z}$|=2D.$\overline{z}$=-1+i

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.通常我们把三条侧棱两两垂直的三棱锥称作“直角三棱锥”,在一次研究性学习活动中,老师组织同学们对“直角三棱锥”的性质进行了探究,已知直角三棱锥P-ABC中,PA,PB,PC两两垂直,且PA=a,PB=b,PC=c,下面的5个研究小组的研究成果:
①△ABC可能为钝角三角形;
②PA⊥BC;
③顶点P在底面ABC内的射影为△ABC的重心;
④三个侧面PAB,PAC,PBC两两垂直;
⑤该三棱锥的外接球的半径为$\frac{1}{2}\sqrt{{a}^{2}+{b}^{2}+{c}^{2}}$,
其中正确结论的序号为②④⑤.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.设f(x)在x=x0处可导,求极限$\underset{lim}{x{-x}_{0}}$$\frac{xf{(x}_{0}){-x}_{0}f(x)}{x-{x}_{0}}$.

查看答案和解析>>

同步练习册答案