精英家教网 > 高中数学 > 题目详情

如图所示,已知△ABC中DE∥FG∥BC,AD∶DF∶FB=2∶3∶4.

求:S△ADE∶S四边形DEGF∶S四边形BCGF

答案:
解析:

  解:因为AD∶DF=2∶3,

  所以AD∶AF=2∶5.

  所以S△ADE∶S△AFG=4∶25.

  因为AD∶DF∶FB=2∶3∶4,

  所以AD∶AB=2∶9.

  所以S△ADE∶S△ABC=4∶81.

  所以S△ADE∶S四边形DEGF∶S四边形BCGF=4∶21∶56.

  分析:在三角形中加了两条平行线出现了三个相似三角形,把大三角形分成了三部分,求三部分的面积比,分别求△ADE与△AFG的相似比,△ADE与△ABC的相似比,能得到△ADE与△AFG的面积比,△ADE与△ABC的面积比,问题可求.


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

4、如图所示,已知AB⊥平面BCD,BC⊥CD,则图中互相垂直的平面有(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,已知AB⊥平面BCD,M、N分别是AC、AD的中点,BC⊥CD.
(1)求证:MN∥平面BCD;
(2)求证:平面BCD⊥平面ABC;
(3)若AB=1,BC=
3
,求直线AC与平面BCD所成的角.

查看答案和解析>>

科目:高中数学 来源: 题型:

A:如图所示,已知AB为⊙O的直径,AC为弦,OD∥BC,交AC于点D,BC=4cm,
(1)试判断OD与AC的关系;
(2)求OD的长;
(3)若2sinA-1=0,求⊙O的直径.
B:(选修4-4)已知直线l经过点P(1,1),倾斜角α=
4

(1)写出直线l的参数方程;
(2)设l与圆x2+y2=4相交于两点A、B,求点P到A、B两点的距离之积.

查看答案和解析>>

科目:高中数学 来源: 题型:

一次机器人足球比赛中,甲队1号机器人由点A开始作匀速直线运动,到达点B时,发现足球在点D处正以2倍于自己的速度向点A作匀速直线滚动.如图所示,已知AB=4
2
dm,AD=17dm,∠BAC=45°
.若忽略机器人原地旋转所需的时间,则该机器人最快可在何处截住足球?

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图所示,已知
AB
=2
BC
OA
=
a
OB
=
b
OC
=
c
,则
c
=
 
.(用
a
b
表示)

查看答案和解析>>

同步练习册答案