精英家教网 > 高中数学 > 题目详情
设数列{an}的前n项和Sn,已知a1=1,a2=2,a3=3,且(4n-3)Sn+1-(4n+5)Sn=αn+β(n∈N*),其中α,β为常数.
(1)求α,β的值;
(2)证明数列{an}为等差数列;
(3)设bn=a1a2+a2a3+…+anan+1,求和
(a2+a3)
b1)a1
+
(a3+a4)
b2)a2
+…+
(an+1+an+2)
bn)an
(n∈N*).
考点:数列的求和,等差关系的确定
专题:等差数列与等比数列
分析:(1)由已知条件令n=1,得α+β=-6,令n=2,得2α+β=-9,由此求出α=β=-3.
(2)(4n-3)Sn+1-(4n+5)Sn=-3n-3,推导出(8n+10)an+2=(4n+5)an+1+(4n+5)an+3,由此能证明数列{an}为等差数列.
(3)由an=n,得bn=
n(n+1)(n+2)
3
cn=
(an+1+an+2)
bn)an
=
1
2
•[
1
n(n+1)(-3)n-2
-
1
(n+1)(n+2)(-3)n-1
],由此利用裂项求和法能求出
(a2+a3)
b1)a1
+
(a3+a4)
b2)a2
+…+
(an+1+an+2)
bn)an
的和.
解答: (1)解:∵(4n-3)Sn+1-(4n+5)Sn=αn+β(n∈N*),
∴令n=1,则S2-9S1=α+β,即α+β=-6,
令n=2,则5S3-13S2=2α+β,即2α+β=-9,
解得α=β=-3.
(2)证明:∵(4n-3)Sn+1-(4n+5)Sn=-3n-3,
∴(4n-3)(Sn+1-Sn)=8Sn-3n-3,
∴(4n-3)an+1=8Sn-3n-3,①
∴(4n+1)an+2=8Sn+1-3(n+1)-3,②
②-①,得(4n+1)an+2=(4n+5)an+1-3,③
∴(4n+5)an+3=(4n+9)an+2-3,④
④-③,得(4n+5)an+3-(4n+1)an+2=(4n+9)an+2-(4n+5)an+1
∴(8n+10)an+2=(4n+5)an+1+(4n+5)an+3
即2an+2=an+1+an+3n,
且已知2a2=a1+a3
∴数列{an}为等差数列.
(3)解:∵a1=1,a2=2,a3=3,{an}为等差数列,
∴an=n,
∴bn=a1a2+a2a3+…+anan+1
=1•2+2•3+…+n(n+1)
=(12+22+32+…+n2)+(1+2+3+…+n)
=
n(n+1)(2n+1)
6
+
n(n+1)
2

=
n(n+1)(n+2)
3

cn=
(an+1+an+2)
bn)an
=
2n+3
n(n+1)(n+2)
3
•(-3)n

=
-(2n+3)
n(n+1)(n+2)(-3)n-1

=
1
2
•[
1
n(n+1)(-3)n-2
-
1
(n+1)(n+2)(-3)n-1
],
(a2+a3)
b1)a1
+
(a3+a4)
b2)a2
+…+
(an+1+an+2)
bn)an

=
1
2
[(
1
1•2•(-3)-1
-
1
2•3•(-3)0
)+(
1
2•3•(-3)0
-
1
3•4•(-3)
)+…+(
1
n(n+1)(-3)n-2
-
1
(n+1)(n+2)(-3)n-1
)]
=
1
2
[
1
1•2•(-3)-1
-
1
(n+1)(n+2)(-3)n-1
]
=-
3
4
-
1
2(n+1)(n+2)(-3)n-1
点评:本题考查等差数列的证明,考查数列的前n项和的求法,解题时要认真审题,注意裂项求和法的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知单调递增的等比数列{an}满足:a2+a3+a4=28,且a3+2是a2,a4的等差中项.
(1)求数列{an}的通项公式;
(2)若bn=anlog
1
2
an,Sn=b1+b2+…+bn,求使Sn+n•2n+1>50成立的正整数n的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
a
=3
i
-4
j
a
+
b
=4
i
-3
j
i
j
为相互垂直的单位向量.
(1)求向量
a
b
的夹角;
(2)对非零向量
p
q
,如果存在不为零的常数α,β使α
p
q
=
0
,那么称向量
p
q
是线性相关的,否则称向量
p
q
是线性无关的.向量
a
b
是线性相关还是线性无关?为什么?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2alnx-x+
1
x
,(a∈R,且a≠0);g(x)=-x2-x+2
2
b.
(Ⅰ)若f(x)在定义域上有极值,求实数a的取值范围;
(Ⅱ)若对?x1∈[1,e],总?x2∈[1,e],使得f(x1)<g(x2),则等价为fmax(x)<gmax(x),利用导数与最值之间的关系,即可求实数b的取值范围.
(Ⅲ)对?n∈N,且n≥2,证明:ln(n!)4<(n-1)(n+2).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线x2=-4y的切线l垂直于直线2x+y=0,求切线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知(1-2x)2014=a0+a1x+a2x2+…+a2014x2014,则a1+2a2+3a3+…+2014a2014=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四面体ABCD中,O、E分别是BD、BC的中点,AB=AD=
2
,CA=CB=CD=BD=2,
(1)求证:BD⊥AC;
(2)求三棱锥E-ADC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量x(吨)与相应的生产能耗y(吨标准煤)的几组对照数据.
x3456
t2.5344.5
(1)请画出上表数据的散点图;
(2)根据上表数据,利用最小二乘法,求出y关于x的线性回归方程y=bx+a;
(3)利用(2)中的线性回归方程,试估计生产101吨甲产品的生产能耗为多少吨标准煤?

查看答案和解析>>

科目:高中数学 来源: 题型:

等比数列{an}中,a1=2,a4=16,
(1)求数列{an}的通项公式;
(2)若a1,a2分别是等差数列{bn}的第3项和第5项,求数列{bn}的通项公式及前n项和Sn
(3)在(1)(2)条件下,设cn=bn•an,Tn为数列{cn}的前n项和,求Tn

查看答案和解析>>

同步练习册答案