精英家教网 > 高中数学 > 题目详情
已知.
(Ⅰ)当时,判断的奇偶性,并说明理由;
(Ⅱ)当时,若,求的值;
(Ⅲ)若,且对任何不等式恒成立,求实数的取值范围.
(Ⅰ)既不是奇函数,也不是偶函数;(Ⅱ)
(Ⅲ)当时,的取值范围是;当时,的取值范围是;当时,的取值范围是.

试题分析:(Ⅰ)对函数奇偶性的判断,一定要结合函数特征先作大致判断,然后再根据奇函数偶函数的定义作严格的证明.当时,,从解析式可以看出它既不是奇函数,也不是偶函数.对既不是奇函数,也不是偶函数的函数,一般取两个特殊值说明.
(Ⅱ)当时,, 由,这是一个含有绝对值符号的不等式,对这种不等式,一般先分情况去绝对值符号.这又是一个含有指数式的不等式,对这种不等式,一般将指数式看作一个整体,先求出指数式的值,然后再利用指数式求出的值.
(Ⅲ)不等式恒成立的问题,一般有以下两种考虑,一是分离参数,二是直接求最值.在本题中,分离参数比较容易.分离参数时需要除以,故首先考虑的情况. 易得时,取任意实数,不等式恒成立.
,此时原不等式变为;即,这时应满足:,所以接下来就求的最大值和的最小值.在求这个最大值和最小值时,因数还有一个参数,所以又需要对进行讨论.
试题解析:(Ⅰ)当时,既不是奇函数也不是偶函数  
,∴ 
所以既不是奇函数,也不是偶函数           3分
(Ⅱ)当时,, 由  
  
解得 
所以           8分
(Ⅲ)当时,取任意实数,不等式恒成立,
故只需考虑,此时原不等式变为;即

又函数上单调递增,所以;
对于函数 
①当时,在单调递减,,又,
所以,此时的取值范围是  
②当,在上,,
时,,此时要使存在,
必须有    即,此时的取值范围是
综上,当时,的取值范围是;
时,的取值范围是;
时,的取值范围是           13分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知偶函数y=f(x)定义域是[-3,3],当时,f(x)=-1.

(1)求函数y=f(x)的解析式;
(2)画出函数y=f(x)的图象,并利用图象写出函数y=f(x)的单调区间和值域.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数

(1)请在所给的平面直角坐标系中画出函数的图像;
(2)根据函数的图像回答下列问题:
①求函数的单调区间;
②求函数的值域;
③求关于的方程在区间上解的个数.
(回答上述3个小题都只需直接写出结果,不需给出演算步骤)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数
(1)求的定义域;
(2)问是否存在实数,当时,的值域为,且 若存在,求出的值,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数,且(1)判断函数的奇偶性;(2)判断上的单调性并加以证明.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

下列函数中,满足“对任意的时,均有”的是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若不等式对于一切恒成立,则a的最小值是(  )
A.0B.-2 C.D.-3

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如果奇函数f(x)在区间[3,7]上是增函数且最大值为5,那么f(x)在区间[-7,-3]上是(   )
A.增函数且最小值是-5B.增函数且最大值是-5
C.减函数且最大值是-5D.减函数且最小值是-5

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

对于定义在上的函数,有如下四个命题:
① 若,则函数是奇函数;②若则函数不是偶函数;
③ 若则函数上的增函数;④若则函数不是上的减函数.其中正确的命题有______________.(写出你认为正确的所有命题的序号).

查看答案和解析>>

同步练习册答案