精英家教网 > 高中数学 > 题目详情
已知菱形中,,沿对角线折起,使二面角,则点所在平面的距离等于           
先设中点为,连接,然后解得
,过点的垂线,即为所求。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图所示,四棱锥的底面是边长为1的菱形,
E是CD的中点,PA底面ABCD,
(I)证明:平面PBE平面PAB;
(II)求二面角A—BE—P和的大小。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图所示,平面PAD⊥平面ABCDABCD为正方形,PAAD,且PA=AD=2,EFG分别是线段PAPDCD的中点。
(1)求证:BC//平面EFG
(2)求三棱锥EAFG的体积。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在五棱锥中,底面
(1)证明:平面
(2)求二面角的余弦值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在三棱锥中,,.
(1)  求三棱锥的体积;
(2)  证明:;
(3)  求异面直线SB和AC所成角的余弦值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在几何体中,面为矩形,
(1)求证;当时,平面PBD⊥平面PAC;
(2)当时,求二面角的取值范围。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图6,正方形所在平面与圆所在平面相交于,线段为圆的弦,垂直于圆所在平面,垂足是圆上异于的点,,圆的直径为9.
(1)求证:平面平面
(2)求二面角的平面角的正切值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥中,底面是矩形,已知
(1)证明:平面
(2)求异面直线PC与AD所成的角的大小;
(3)求二面角的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在四棱锥中,底面的中点,
(Ⅰ)求四棱锥的体积
(Ⅱ) 求二面角的大小.

查看答案和解析>>

同步练习册答案