精英家教网 > 高中数学 > 题目详情
如图所示,四棱锥的底面是边长为1的菱形,
E是CD的中点,PA底面ABCD,
(I)证明:平面PBE平面PAB;
(II)求二面角A—BE—P和的大小。
(I)同解析(II)二面角的大小为
解:解法一(I)如图所示, 连结是菱形且知,
是等边三角形. 因为E是CD的中点,所以
所以
又因为PA平面ABCD,平面ABCD,
所以因此 平面PAB.
平面PBE,所以平面PBE平面PAB.
(II)由(I)知,平面PAB, 平面PAB, 所以
所以是二面角的平面角.
中,
故二面角的大小为
解法二:如图所示,以A为原点,建立空间直角坐标系.则相关各点的坐标分别是

(I)因为平面PAB的一个法向量是所以共线.
从而平面PAB. 又因为平面PBE,所以平面PBE平面PAB.
(II)易知是平面PBE的一个法向量,
则由 所以
故可取而平面ABE的一个法向量是
于是,
故二面角的大小为
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,已知是正三棱柱(底面为正三角形,侧棱垂直于底面),它的底面边长和侧棱长都是为侧棱的中点,为底面一边的中点.
(1)求异面直线所成的角;
(2)求证:
(3)求直线到平面的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分13分 )
已知四棱锥的底面是边长为2的正方形,
分别为的中点,
(Ⅰ)求直线与面所成角的正弦值;
(Ⅱ)求二面角的正切值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图,在四棱锥S—ABCD中,底面ABCD为矩形,SA⊥平面ABCD,二面角S—
CD—A的平面角为,M为AB中点,N为SC中点.
(1)证明:MN//平面SAD;
(2)证明:平面SMC⊥平面SCD;


 
  (3)若,求实数的值,使得直线SM与平面SCD所成角为

 

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分12分)
如图,在直三棱柱ABC-A1B1C1中,E是BC的中点。
(1)求异面直线AE与A1C所成的角;
(2)若G为C1C上一点,且EG⊥A1C,试确定点G的位置;


 
  (3)在(2)的条件下,求二面角A1-AG-E的大小

 

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

为两条直线,为两个平面,下列四个命题中真命题是       (   )
A.若所成角相等,则B.若
C.若D.若

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分14分)如图,已知平面平面=,且,二面角
(Ⅰ)求点到平面的距离;
(Ⅱ)设二面角的大小为,求的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知菱形中,,沿对角线折起,使二面角,则点所在平面的距离等于           

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若多面体的各个顶点都在同一球面上,则称这个多面体
内接于球.如图,设长方体内接于球
两点之间的球面距离
为________.

查看答案和解析>>

同步练习册答案