精英家教网 > 高中数学 > 题目详情
(本题满分12分)
如图,在直三棱柱ABC-A1B1C1中,E是BC的中点。
(1)求异面直线AE与A1C所成的角;
(2)若G为C1C上一点,且EG⊥A1C,试确定点G的位置;


 
  (3)在(2)的条件下,求二面角A1-AG-E的大小

 
解:(1)取B1C1的中点E1,连A1E1,E1C,则AE∥A1E1,∴∠E1A1C是异面直线A
与A1C所成的角。设,则

中,


 
所以异面直线AE与A1C所成的角为。  ------------------4分

  (2).由(1)知,A1E1⊥B1C1,
又因为三棱柱ABC-A1B1C1是直三棱柱
⊥BCC1B1,又EG⊥A1 CE1⊥EG.
=∠GEC ~

所以G是CC1的中点             ---------------------------- --8分
(3)连结AG,设P是AC的中点,过点P作PQ⊥AG于Q,连EP,EQ,则EP⊥AC.
平面ABC⊥平面ACC1A1  EP⊥平面ACC1A
而PQ⊥AG  EQ⊥AG.∠PQE是二面角C-AG-E的平面角.
由EP=a,AP=a,PQ=,得
所以二面角C-AG-E的平面角是  ,而所求二面角是二面角C-AG-E的补角,故二面角的平面角是  ------------------12分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图所示,四棱锥的底面是边长为1的菱形,
E是CD的中点,PA底面ABCD,
(I)证明:平面PBE平面PAB;
(II)求二面角A—BE—P和的大小。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在三棱锥中,,.
(1)  求三棱锥的体积;
(2)  证明:;
(3)  求异面直线SB和AC所成角的余弦值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题


如图,已知四棱柱ABCD—A1B1C1D1中,A1D⊥底面ABCD,底面ABCD是边长为1的正方形,侧棱AA1=2。
(I)求证:C1D//平面ABB1A1
(II)求直线BD1与平面A1C1D所成角的正弦值;
(Ⅲ)求二面角D—A1C1—A的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分13分 )
如题18图,已知四棱锥的底面是边长为2的正方形,分别为的中点.
(Ⅰ)求直线与面所成的角;
(Ⅱ)求二面角的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图,在直三棱柱中,
,点D是的中点

⑴求证:
⑵求证:平面

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)如图5所示,四棱锥P-ABCD的底面ABCD是半径为R的圆的内接四边形,其中BD是圆的直径,
(1)求线段PD的长;
(2)若,求三棱锥P-ABC的体积。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

命题1 长方体中,必存在到各顶点距离相等的点;
命题2 长方体中,必存在到各棱距离相等的点;
  命题3 长方体中,必存在到各面距离相等的点.
以上三个命题中正确的有          (   )      
A.0个  B.1个  C.2个 D.3个

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

平行四边形ABCD的对角线的交点为O,点P在平面ABCD外的一点,且PA="PC," PD="PB," 则PO与平面 ABCD的位置关系是( )
A.PO//平面 ABCDB.PO平面ABCD
C.PO与平面ABCD斜交D.PO⊥平面ABCD

查看答案和解析>>

同步练习册答案