精英家教网 > 高中数学 > 题目详情

【题目】已知

1)当为常数,且在区间变化时,求的最小值

2)证明:对任意的,总存在,使得

【答案】(1);(2)证明略.

【解析】

试题分析:(1)当为常数时,则函数即为关于的函数,求出此函数在区间的单调性,即可求得函数的最小值

(2)设,先求函数的单调性,再结合零点存在性定理,即可证明.

试题解析:(1)当为常数时,

上递增,其最小值

(2)令

,即时,在区间内单调递减,

所以对任意在区间内均存在零点,即存在,使得

,即时,内单调递减,在内单调递增,

所以时,函数取最小值

,则

所以内存在零点;

,则,所以内存在零点,

所以,对任意在区间内均存在零点,即存在,使得

结合①②,对任意的,总存在,使得

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知△BCD中,∠BCD=90°,BC=CD=1,AB⊥平面BCD,∠ADB=60°,E、F分别是AC、AD上的动点,且

(1)求证:不论为何值,总有平面BEF⊥平面ABC;

(2)当λ为何值时,平面BEF⊥平面ACD ?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】根据某电子商务平台的调查统计显示,参与调查的1000位上网购物者的年龄情况如图.

(1)已知三个年龄段的上网购物者人数成等差数列的值

(2)该电子商务平台将年龄在之间的人群定义为高消费人群其他的年龄段定义为潜在消费人群为了鼓励潜在消费人群的消费该平台决定发放代金券高消费人群每人发放50元的代金券,潜在消费人群每人发放80元的代金券,已经采用分层抽样的方式从参与调查的1000位上网购物者中抽取了10人,现在要在这10人中随机抽取3人进行回访,求此三人获得代金券总和的分布列与数学期望

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】根据某电子商务平台的调查统计显示,参与调查的位上网购物者的年龄情况如右图.

1已知三个年龄段的上网购物者人数成等差数列,求的值;

2该电子商务平台将年龄在之间的人群定义为高消费人群,其他的年龄段定义为潜在消费人群,为了鼓励潜在消费人群的消费,该平台决定发放代金券,高消费人群每人发放元的代金券,潜在消费人群每人发放元的代金券.已经采用分层抽样的方式从参与调查的位上网购物者中抽取了人,现在要在这人中随机抽取人进行回访,求此三人获得代金券总和的分布列与数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等比数列满足,数列满足.

(1)求数列 的通项公式;

(2)令,求数列的前项和

(3)若,求对所有的正整数都有成立的的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)若的一个极值点到直线的距离为1,求的值;

(2)求方程的根的个数

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量 ,函数的图象过点,点与其相邻的最高点的距离为.

(1)求的单调递增区间;

(2)计算

(3)设函数,试讨论函数在区间上的零点个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数自然数的底数)函数图象与函数图象在有公共的切线.

值;

讨论函数单调性;

证明:当时,区间恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,椭圆和抛物线交于两点,且直线恰好通过椭圆的右焦点.

1求椭圆的标准方程;

2经过椭圆右焦点的直线和椭圆交于两点,点在椭圆上,且

其中为坐标原点,求直线的斜率.

查看答案和解析>>

同步练习册答案