精英家教网 > 高中数学 > 题目详情
轴上一点A分别向函数与函数引不是水平方向的切线,两切线分别与轴相交于点B和点C,O为坐标原点,记△OAB的面积为,△OAC的面积为,则+的最小值为      
8

试题分析:,设两切点分别为,(),
,即,令,得
,得,即,令,得;令,得.依题意, ,得
+===
=,可得当时,有最小值8.
点评:利用导数求解曲线在某点的切线方程是解决此类问题的关键,对于高次函数的最值问题常常利用导数法求解
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

给出定义:若函数在D上可导,即存在,且导函数在D上也可导,则称在D上存在二阶导函数,记=,若<0在D上恒成立,则称在D上为凸函数,以下四个函数在上不是凸函数的是(     )
A.=B.=
C.=D.=

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设曲线在点处的切线与直线平行,则=( )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知函数,若,则的值为       

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数
(1)当时,求曲线在点处的切线方程;
(2)对任意在区间上是增函数,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数.
(1)求函数的单调区间和极值。
(2)若关于的方程有三个不同实根,求实数的取值范围;
(3)已知当(1,+∞)时,恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数
(Ⅰ)求曲线在点处的切线方程;
(Ⅱ)直线为曲线的切线,且经过原点,求直线的方程及切点坐标.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数
(I)当时,讨论函数的单调性:
(Ⅱ)若函数的图像上存在不同两点,设线段的中点为,使得在点处的切线与直线平行或重合,则说函数是“中值平衡函数”,切线叫做函数的“中值平衡切线”.
试判断函数是否是“中值平衡函数”?若是,判断函数的“中值平衡切线”的条数;若不是,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知函数,若在区间上单调递减,则的取值范围是C
A.B.C.D.

查看答案和解析>>

同步练习册答案