精英家教网 > 高中数学 > 题目详情
如图,平面α上定点F到定直线l的距离FA=2,曲线C是平面α上到定点F和到定直线l的距离相等的动点P的轨迹.设FB⊥α,且FB=2.
(1)若曲线C上存在点P0,使得P0B⊥AB,试求直线P0B与平面α所成角θ的大小;
(2)对(1)中P0,求点F到平面ABP0的距离h.
(1)(解法一)如图,以线段FA的中点为原点O,以线段FA所在的直线为x轴,建立空间直角坐标系O-xyz.
由题意,曲线C是平面α上以原点O为顶点,由于在xOy平面内,CF(2,0,0)
是以O为顶点,以x轴为对称轴的抛物线,其方程为y2=4x,
因此,可设P(
y2
4
,y,0)
A(-1,0,0),B(1,0,2),所以,
AB
=(2,0,2)
PB
=(1-
y2
4
,-y,2)

由P0B⊥AB,得2(1-
y2
4
)+4=0⇒y=2
3
⇒P(3,2
3
,0)

所以,直线P0B与平面α所成角的大小为arctan
1
2
(或arcsin
3
3
).
(解法二)如图,以点A为原点O,以线段FA所在的直线为x轴,建立空间直角坐标系O-xyz.
所以,A(0,0,0),B(2,0,2),F(2,0,0),并设P(x,y,0),
由题意,
PB2+AB2=AP2
PF=PE.

(x-2)2+y2+4+8=x2+y2
(x-2)2+y2=x2.
⇒P(3,2
3
,0)

所以,直线P0B与平面α所成角的大小为arctan
1
2
(或arcsin
3
3
).
(2)(解法一)由(1),得△ABP的面积为S△ABP=2
10
,△AFP的面积为S△AFP=2
3

所以,
1
3
×2
10
h=
1
3
×2
3
×2

解得,h=
30
5

(解法二)
AB
=(2,0,2)
AP
=(4,2
3
,0)
,设向量
n
=(x,y,z)

2x+2z=0
4x+2
3
y=0

所以,平面ABP0的一个法向量
n0
=(3,-2
3
,-3)
,∴h=
|
AF
n0
|
|
n0
|
=
30
5

练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

已知四棱柱ABCD-A1B1C1D1,侧棱与底面垂直,底面ABCD是菱形且∠BAD=60°,侧棱与底面边长均为2,则面AB1C与底面A1B1C1D1,ABCD所成角的正弦值为(  )
A.
1
2
B.2C.
5
5
D.
2
5
5

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

在正方体ABCD-A1B1C1D1中,直线A1B和平面ABCD所成角是______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在正方体ABCD-A1B1C1D1中,E是棱CC1的中点,F是侧面BCC1B1内的动点,且A1F平面D1AE,则A1F与平面BCC1B1所成角的正切值构成的集合是(  )
A.{t|
2
5
5
≤t≤2
3
}
B.{t|
2
5
5
≤t≤2}
C.{t|2≤t≤2
3
}
D.{t|2≤t≤2
2
}

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在正方体ABCD-A′B′C′D′中,直线BC′与平面A′BD所成的角的余弦值等于(  )
A.
2
4
B.
3
3
C.
2
3
D.
3
2

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥P-ABCD的底面是正方形,PA⊥底面ABCD,PA=AD=2,点M、N分别在棱PD、PC的中点.
(1)求证:PD⊥平面AMN;
(2)求三棱锥P-AMN的体积;
(3)求二面角P-AN-M的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在棱长为1的正方体ABCD-A1B1C1D1中,E,F分别是A1B1,CD的中点.
(1)求二面角E-AF-B的大小;&nb5p;
(2)求点B到面AEF的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在三棱锥P-ABC中,PB⊥面ABC,∠ABC=90°,AB=BC=2,∠PAB=45°,点D,E,F分别是AC,AB,BC的中点.
(1)求证:EF⊥PD;
(2)求直线PF与平面PBD所成的角的大小;
(3)求二面角E-PF-B的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知正方体ABCD-A1B1C1D1,棱长为4,E为面A1D1DA的中心,
CF=3FC1,AH=3HD,
(1)求异面直线EB1与HF之间的距离
(2)求二面角H-B1E-A1的平面角的余弦值.

查看答案和解析>>

同步练习册答案