精英家教网 > 高中数学 > 题目详情
已知等差数列{an}的公差d≠0,且a1,a3,a13成等比数列,若a1=2,Sn是数列{an}前n项的和,则
Sn+16
1
2
an+3
(n∈N*)的最小值为(  )
A、4
B、3
C、2
3
-2
D、
9
2
考点:等差数列的性质
专题:计算题,等差数列与等比数列
分析:由题意得(1+2d)2=1+12d,求出公差d的值,得到数列{an}的通项公式,前n项和,从而可得
Sn+16
1
2
an+3
,换元,结合函数的单调性,即可求出函数的最小值.
解答: 解:∵a1=2,a1、a3、a13 成等比数列,
∴(2+2d)2=2(2+12d).
得d=4或d=0(舍去),
∴an =4n-2,
∴Sn=2n2
Sn+16
1
2
an+3
=
2n2+16
2n+2

令t=n+1,则
2Sn+16
an+3
=t+
9
t
-2≥6-2=4
当且仅当t=3,即n=2时,∴
2Sn+16
an+3
的最小值为4.
故选:A.
点评:本题主要考查等比数列的定义和性质,等比数列的通项公式,考查函数的单调性,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

对于定义域为D的函数y=f(x)和常数c,若对任意正实数ξ,?x∈D,使得0<|f(x)-c|<ξ恒成立,则称函数y=f(x)为“敛c函数”,现给出如下函数:
①f(x)=x(x∈Z);
②f(x)=(
1
2
x+2(x∈Z);
③f(x)=log2x+1;
④f(x)=
2x-1
2x

其中为“敛2函数”的有(  )
A、①②B、③④
C、①②③D、②③④

查看答案和解析>>

科目:高中数学 来源: 题型:

已知x与y之间的一组数据如表所示,则y与x的线性回归方程y=bx+a必过点(  )
 x1346
y0457
A、(3.5,4)
B、(2,2)
C、(3.5,2)
D、(2,4)

查看答案和解析>>

科目:高中数学 来源: 题型:

若直线xcosθ+ysinθ-1=0与圆(x-1)2+(y-sinθ)2=
1
16
相切,且θ为锐角,则该直线的倾斜角是(  )
A、
3
B、
6
C、
π
6
D、
π
3

查看答案和解析>>

科目:高中数学 来源: 题型:

对于直线m,n和平面α,β,γ,有如下五个命题:
①若m∥α,m⊥n,则n⊥α;
②若m⊥α,m⊥n,则n∥α;
③若α⊥β,γ⊥β,则α∥γ;
④若m⊥α,m∥n,n?β,则α⊥β;
⑤若α∩β=l,β∩γ=m,l∥m,则α∥β.
其中正确的命题个数为(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

平面直角坐标系中,由不等式组
x+y≤0
x-y≤0
x≥-3
围成的区域的面积是(  )
A、6B、7C、8D、9

查看答案和解析>>

科目:高中数学 来源: 题型:

设a,b∈R,且a>b,则(  )
A、a2>b2
B、
a
b
<1
C、lg(a-b)>0
D、(
1
2
a<2-b

查看答案和解析>>

科目:高中数学 来源: 题型:

已知图中一组函数图象,它们分别与其后所列的一个现实情境相匹配:

情境A:一份30分钟前从冰箱里取出来,然后被防到微波炉里加热,最后放到餐桌上的食物的温度(将0时刻确定为食物从冰箱里被取出来的那一刻)
情境B:一个1970年生产的留声机从它刚开始的售价到现在的价值(它被一个爱好者收藏,并且被保存的很好);
情境C:从你刚开始放水洗澡,到你洗完后把它排掉这段时间浴缸里水的高度;
情境D:根据乘客人数,每辆公交车一趟营运的利润.
其中与情境A、B、C、D对应的图象正确的序号是(  )
A、①②③④B、②①③④
C、①②④③D、①③④②

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
m
n
,其中向量
m
=(2cosx,1),
n
=(cosx,
3
sin2x),x∈R.
(1)求函数f(x)的最小正周期;
(2)若a,b,c分别为△ABC的三个内角A,B,C对应的边长,f(
A
2
)=3,且a=2
3
,求△ABC周长的最大值.

查看答案和解析>>

同步练习册答案