精英家教网 > 高中数学 > 题目详情
13.设U={1,2,3},M,N是U的子集,若M∩N={1,3},则称(M,N)为一个“理想配集”,求符合此条件的“理想配集”的个数(规定(M,N)与(N,M)不同).

分析 由已知可得:M,N中必须含有元素1,3,再利用理想配集的定义即可得出.

解答 解 符合条件的理想配集有
①M={1,3},N={1,3}.
②M={1,3},N={1,2,3}.
③M={1,2,3},N={1,3}.
共3个.

点评 本题考查了理想配集、新定义、集合运算性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.直线$\left\{\begin{array}{l}x=1+t\\ y=-1+t\end{array}\right.$(t为参数)与曲线$\left\{\begin{array}{l}x=2cosα\\ y=2sinα\end{array}\right.$(α为参数)的位置关系是相交.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.执行如下程序框图,则输出的n=4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知正项等比数列{an}的前n项和为Sn,且S8-2S4=5,则a9+a10+a11+a12的最小值为(  )
A.10B.15C.20D.25

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=-x3+12x+m.
(1)若x∈R,求函数f(x)的极大值与极小值之差;
(2)若函数y=f(x)有三个零点,求m的取值范围;
(3)当x∈[-1,3]时,f(x)的最小值为-2,求f(x)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.观察下列各式:
1+$\frac{1}{1+2}$=$\frac{4}{3}$,1+$\frac{1}{1+2}$+$\frac{1}{1+2+3}$=$\frac{3}{2}$,1+$\frac{1}{1+2}$+$\frac{1}{1+2+3}$+$\frac{1}{1+2+3+4}$=$\frac{8}{5}$,…,则1+$\frac{1}{1+2}$+$\frac{1}{1+2+3}$+…$\frac{1}{1+2+…+9}$=$\frac{9}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.下列四个说法:
①“x>2”是“$\frac{1}{x}<\frac{1}{2}$”的充分不必要条件;
②命题“设a,b∈R,若a+b≠6,则a≠3或b≠3”是一个假命题;
③命题p:存在x0∈R,使得x02+x0+1<0,则¬p:任意x∈R都有x2+x+1≥0
④一个命题的否命题为真,则它的逆命题一定为真
其中正确的是(  )
A.①④B.②④C.①③④D.①③

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.某同学同时投掷两颗骰子,得到点数分别为a,b,则椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1的离心率e>$\frac{\sqrt{3}}{2}$的概率是(  )
A.$\frac{1}{18}$B.$\frac{5}{36}$C.$\frac{1}{6}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.函数f(x)=6cos2$\frac{ωx}{2}+\sqrt{3}$sinωx-3(ω>0)在一个周期内的图象如图所示,A为图象的最高点,B、C为图象与l轴的交点,且△ABC为正三角形.
(Ⅰ)求f(x)解析式及其值域;
(Ⅱ)若f(x0)=$\frac{8\sqrt{3}}{5}$,且x0∈(-$\frac{10}{3}$,$\frac{2}{3}$),求f(x0+1)的值.

查看答案和解析>>

同步练习册答案