2£®Ä³Í¬Ñ§Í¬Ê±Í¶ÖÀÁ½¿Å÷»×Ó£¬µÃµ½µãÊý·Ö±ðΪa£¬b£¬ÔòÍÖÔ²$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1µÄÀëÐÄÂÊe£¾$\frac{\sqrt{3}}{2}$µÄ¸ÅÂÊÊÇ£¨¡¡¡¡£©
A£®$\frac{1}{18}$B£®$\frac{5}{36}$C£®$\frac{1}{6}$D£®$\frac{1}{3}$

·ÖÎö ijͬѧͬʱͶÖÀÁ½¿Å÷»×Ó£¬µÃµ½µãÊý·Ö±ðΪa£¬b£¬»ù±¾Ê¼þ×ÜÊýn=6¡Á6=36£¬ÀûÓÃÁоٷ¨Çó³öÍÖÔ²$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1µÄÀëÐÄÂÊe£¾$\frac{\sqrt{3}}{2}$°üº¬µÄ»ù±¾Ê¼þµÄ¸öÊý£¬ÓÉ´ËÄÜÇó³öÍÖÔ²$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1µÄÀëÐÄÂÊe£¾$\frac{\sqrt{3}}{2}$µÄ¸ÅÂÊ£®

½â´ð ½â£ºÄ³Í¬Ñ§Í¬Ê±Í¶ÖÀÁ½¿Å÷»×Ó£¬µÃµ½µãÊý·Ö±ðΪa£¬b£¬
»ù±¾Ê¼þ×ÜÊýn=6¡Á6=36£¬
ÍÖÔ²$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1µÄÀëÐÄÂÊe£¾$\frac{\sqrt{3}}{2}$°üº¬µÄ»ù±¾Ê¼þÓУº
£¨3£¬1£©£¬£¨4£¬1£©£¬£¨5£¬1£©£¬£¨5£¬2£©£¬£¨6£¬1£©£¬£¨6£¬2£©£¬¹²6¸ö£¬
¡àÍÖÔ²$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1µÄÀëÐÄÂÊe£¾$\frac{\sqrt{3}}{2}$µÄ¸ÅÂÊÊÇp=$\frac{6}{36}$=$\frac{1}{6}$£®
¹ÊÑ¡£ºC£®

µãÆÀ ±¾Ì⿼²é¸ÅÂʵÄÇ󷨣¬¿¼²é¹Åµä¸ÅÐ͸ÅÂʼÆË㹫ʽ¡¢ÍÖÔ²ÐÔÖʵȻù´¡ÖªÊ¶£¬¿¼²éÊý¾Ý´¦ÀíÄÜÁ¦¡¢ÔËËãÇó½âÄÜÁ¦£¬¿¼²éº¯ÊýÓë·½³Ì˼Ï룬ÊÇ»ù´¡Ì⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

12£®ÔÚÖ±½Ç×ø±êϵxOyÖУ¬ÇúÏßCµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}x=\sqrt{3}cos¦Á\\ y=sin¦Á\end{array}\right.$£¨¦ÁΪ²ÎÊý£©£¬ÔÚÒÔ×ø±êÔ­µãΪ¼«µã£¬xÖáÕý°ëÖáΪ¼«ÖáµÄ×ø±êϵÖУ¬Ö±Ïß$l£º\;\sqrt{2}¦Ñcos£¨{¦È+\frac{¦Ð}{4}}£©+4=0$£®
£¨1£©ÒÑÖªÖ±½Ç×ø±êϵÖУ¬µãAµÄ×ø±êΪ£¨0£¬4£©£¬ÅжϵãAÓëÖ±ÏßlµÄλÖùØÏµ£»
£¨2£©ÉèµãBΪÇúÏßCÉϵÄÒ»¸ö¶¯µã£¬ÇóµãBµ½Ö±Ïßl¾àÀëµÄ×î´óÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®ÉèU={1£¬2£¬3}£¬M£¬NÊÇUµÄ×Ó¼¯£¬ÈôM¡ÉN={1£¬3}£¬Ôò³Æ£¨M£¬N£©ÎªÒ»¸ö¡°ÀíÏëÅ伯¡±£¬Çó·ûºÏ´ËÌõ¼þµÄ¡°ÀíÏëÅ伯¡±µÄ¸öÊý£¨¹æ¶¨£¨M£¬N£©Ó루N£¬M£©²»Í¬£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

10£®²»µÈʽ×é$\left\{{\begin{array}{l}{x-{x^2}£¾0}\\{{{log}_x}\frac{1}{3}£¾\frac{1}{2}}\end{array}}\right.$µÄ½â¼¯ÊÇ£¨0£¬$\frac{1}{9}$£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

17£®ÈôÒ»¸ö¼¸ºÎÌåµÄÈýÊÓͼÈçͼËùʾ£¬Ôò¸Ã¼¸ºÎÌåµÄÍâ½ÓÇòµÄÌå»ýΪ£¨¡¡¡¡£©
A£®$\frac{\sqrt{6}}{2}$¦ÐB£®$\frac{\sqrt{5}}{2}$¦ÐC£®$\frac{\sqrt{2}}{2}$¦ÐD£®$\frac{\sqrt{3}}{2}$¦Ð

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

7£®ÒÑÖªº¯Êýf£¨x£©ÊǶ¨ÒåÔÚRÉÏµÄÆæº¯ÊýÇÒµ¥µ÷µÝÔö£¬Ôò²»µÈʽf£¨x£©£¼f£¨x2£©µÄ½â¼¯ÊÇ£¨¡¡¡¡£©
A£®£¨-¡Þ£¬0£©¡È£¨1£¬+¡Þ£©B£®£¨-¡Þ£¬0£©¡È[1£¬+¡Þ£©C£®£¨-¡Þ£¬0]¡È[1£¬+¡Þ£©D£®£¨-¡Þ£¬0£©¡È£¨0£¬1£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

14£®ÎªÁ˽âÈýÃ÷ÊÐXXÖÐѧ¸ß¶þÎÄ¿ÆÑ§ÉúµÄÊýѧˮƽ£¬´Ó¸ÃÖÐѧ¸ß¶þÎÄ¿ÆÑ§ÉúÖÐËæ»ú³éÈ¡ÁË20ÃûѧÉúµÄÆÚÖп¼Êýѧ³É¼¨£¬³É¼¨£¨µ¥Î»£º·Ö£»Âú·Ö£º100·Ö£©µÄƵÂÊ·Ö²¼Ö±·½Í¼Èçͼ£º
£¨¢ñ£©ÇóƵÂÊ·Ö²¼Ö±·½Í¼ÖÐaÖµ£¬²¢ÓÉÕâ20ÃûѧÉú³É¼¨¹À¼Æ¸ÃÖÐѧÊýѧÆÚÖп¼µÄƽ¾ù³É¼¨£»
£¨¢ò£©ÏÖÄê¶Î³¤´Ó³É¼¨ÔÚ70·ÖÒÔÏ£¨²»º¬70·Ö£©µÄѧÉúÖÐÑ¡2ÈË̸»°£¬ÇóÇ¡ÓÐ1È˳ɼ¨ÔÚÇø¼ä[60£¬70£©ÄڵĸÅÂÊ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

4£®ÒÑÖªµãP£¨x£¬y£©Âú×ã²»µÈʽ×é$\left\{\begin{array}{l}{3x+y-7¡Ý0}\\{x-y-1¡Ü0}\\{x+y-5¡Ü0}\end{array}\right.$£¬Ôòz=$\frac{{x}^{2}+xy+{y}^{2}}{xy}$µÄ·¶Î§ÊÇ[3£¬$\frac{17}{4}$]£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

5£®ÒÑÖªº¯Êý$f£¨x£©=sin£¨{x+\frac{¦Ð}{3}}£©+cos£¨{x-\frac{¦Ð}{6}}£©+a$£¬ÇÒf£¨x£©µÄ×î´óֵΪ1£®
£¨I£©ÇóʵÊý¦ÁµÄÖµ£»
£¨II£©Çë˵Ã÷º¯Êýf£¨x£©µÄͼÏóÊÇÓɺ¯Êýy=sinxµÄͼÏó¾­¹ýÔõÑùµÄ±ä»¯µÃµ½£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸