12£®ÔÚÖ±½Ç×ø±êϵxOyÖУ¬ÇúÏßCµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}x=\sqrt{3}cos¦Á\\ y=sin¦Á\end{array}\right.$£¨¦ÁΪ²ÎÊý£©£¬ÔÚÒÔ×ø±êÔ­µãΪ¼«µã£¬xÖáÕý°ëÖáΪ¼«ÖáµÄ×ø±êϵÖУ¬Ö±Ïß$l£º\;\sqrt{2}¦Ñcos£¨{¦È+\frac{¦Ð}{4}}£©+4=0$£®
£¨1£©ÒÑÖªÖ±½Ç×ø±êϵÖУ¬µãAµÄ×ø±êΪ£¨0£¬4£©£¬ÅжϵãAÓëÖ±ÏßlµÄλÖùØÏµ£»
£¨2£©ÉèµãBΪÇúÏßCÉϵÄÒ»¸ö¶¯µã£¬ÇóµãBµ½Ö±Ïßl¾àÀëµÄ×î´óÖµ£®

·ÖÎö £¨1£©¸ù¾Ý¼«×ø±êºÍÖ±½Ç×ø±êµÄת»¯Çó³ölµÄÖ±½Ç×ø±ê·½³Ì£¬´úÈëAµÄ×ø±ê¼ìÑé¼´¿É£»
£¨2£©Éè³öBÊÇ×ø±ê£¬±íʾ³öBµãµ½Ö±ÏßlµÄ¾àÀ룬¸ù¾ÝÈý½Çº¯ÊýµÄÐÔÖÊÇó³ödµÄ×î´óÖµ¼´¿É£®

½â´ð ½â£º£¨1£©$l£º\;\sqrt{2}¦Ñcos£¨{¦È+\frac{¦Ð}{4}}£©+4=\sqrt{2}¦Ñ£¨{cos¦Ècos\frac{¦Ð}{4}-sin¦Èsin\frac{¦Ð}{4}}£©+4=¦Ñcos¦È-¦Ñsin¦È+4=0$£¬
ËùÒÔÖ±ÏßlÔÚÖ±½Ç×ø±êϵÖеķ½³ÌΪx-y+4=0£¬
¾­ÑéÖ¤£¬µãA£¨0£¬4£©ÔÚÖ±ÏßlÉÏ£®
£¨2£©BµãÔÚÇúÏßCÉÏ£¬ÉèBµã×ø±êΪ$£¨\sqrt{3}cos¦Á£¬sin¦Á£©$£¬
ÔòBµãµ½Ö±ÏßlµÄ¾àÀëΪ$d=\frac{{\left|{\sqrt{3}cos¦Á-sin¦Á+4}\right|}}{{\sqrt{2}}}=\frac{{\left|{2cos£¨{¦Á+\frac{¦Ð}{6}}£©+4}\right|}}{{\sqrt{2}}}$£¬
µ±$cos£¨{¦Á+\frac{¦Ð}{6}}£©=1$ʱ£¬${d_{max}}=\frac{6}{{\sqrt{2}}}=3\sqrt{2}$£®

µãÆÀ ±¾Ì⿼²éÁ˼«×ø±êºÍÖ±½Ç×ø±êµÄת»¯£¬¿¼²éµãµ½Ö±ÏߵľàÀ룬¿¼²éÈý½Çº¯ÊýµÄÐÔÖÊ£¬ÊÇÒ»µÀÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

2£®ÔĶÁÈçͼµÄ³ÌÐò¿òͼ£¬ÈôÊä³öS=30£¬ÔòÔÚÅжϿò ÄÚÓ¦ÌîÈ루¡¡¡¡£©
A£®i£¾5B£®i£¾6C£®i£¾4D£®i¡Ý4

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

3£®Ö±Ïß$\left\{\begin{array}{l}x=1+t\\ y=-1+t\end{array}\right.$£¨tΪ²ÎÊý£©ÓëÇúÏß$\left\{\begin{array}{l}x=2cos¦Á\\ y=2sin¦Á\end{array}\right.$£¨¦ÁΪ²ÎÊý£©µÄλÖùØÏµÊÇÏཻ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

20£®ÔÚRt¡÷ABCÖУ¬Á½Ö±½Ç±ß·Ö±ðΪa£¬b£¬Ð±±ßΪc£¬ÔòÓɹ´¹É¶¨ÀíÖªc2=b2+a2£¬ÔòÔÚËÄÃæÌåP-ABCÖУ¬PA¡ÍPB£¬PA¡ÍPC£¬PB¡ÍPC£¬Àà±È¹´¹É¶¨Àí£¬ÀàËÆµÄ½áÂÛΪ£¨¡¡¡¡£©
A£®S¡÷PBC2=S¡÷PAB2+S¡÷PAC2B£®S¡÷ABC2=S¡÷PAB2+S¡÷PAC2
C£®S¡÷ABC2=S¡÷PAB2+S¡÷PAC2+S¡÷PBC2D£®S¡÷PBC2=S¡÷PAB2+S¡÷PAC2+S¡÷ABC2

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

7£®Èçͼ£¬ËÄÀâ×¶P-ABCDÖУ¬Æ½ÃæPAC¡Íµ×ÃæABCD£¬BC=CD=$\frac{1}{2}$AC=2£¬¡ÏACB=¡ÏACD=$\frac{¦Ð}{3}$£®
£¨1£©Ö¤Ã÷£ºAP¡ÍBD£»
£¨2£©ÈôAP=$\sqrt{5}$£¬APÓëBCËù³É½ÇµÄÓàÏÒֵΪ$\frac{{\sqrt{5}}}{5}$£¬Çó¶þÃæ½ÇA-BP-CµÄÓàÏÒÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

17£®ÒÑÖªº¯Êý$f£¨x£©=lnx-\frac{1}{2}a{x^2}+£¨{1-a}£©x$£¬a¡ÊR£®
£¨1£©ÌÖÂÛf£¨x£©µÄµ¥µ÷ÐÔ£»
£¨2£©µ±a=-2ʱ£¬ÕýʵÊýx1£¬x2Âú×ãf£¨x1£©+f£¨x2£©+x1x2=0£¬Ö¤Ã÷£º${x_1}+{x_2}£¾\frac{1}{4}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

4£®Ö´ÐÐÈçϳÌÐò¿òͼ£¬ÔòÊä³öµÄn=4£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

1£®ÒÑÖªÕýÏîµÈ±ÈÊýÁÐ{an}µÄǰnÏîºÍΪSn£¬ÇÒS8-2S4=5£¬Ôòa9+a10+a11+a12µÄ×îСֵΪ£¨¡¡¡¡£©
A£®10B£®15C£®20D£®25

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

2£®Ä³Í¬Ñ§Í¬Ê±Í¶ÖÀÁ½¿Å÷»×Ó£¬µÃµ½µãÊý·Ö±ðΪa£¬b£¬ÔòÍÖÔ²$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1µÄÀëÐÄÂÊe£¾$\frac{\sqrt{3}}{2}$µÄ¸ÅÂÊÊÇ£¨¡¡¡¡£©
A£®$\frac{1}{18}$B£®$\frac{5}{36}$C£®$\frac{1}{6}$D£®$\frac{1}{3}$

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸