精英家教网 > 高中数学 > 题目详情
4.已知点P(x,y)满足不等式组$\left\{\begin{array}{l}{3x+y-7≥0}\\{x-y-1≤0}\\{x+y-5≤0}\end{array}\right.$,则z=$\frac{{x}^{2}+xy+{y}^{2}}{xy}$的范围是[3,$\frac{17}{4}$].

分析 利用分式函数的性质结合换元法设t=$\frac{y}{x}$,进行转化,然后作出不等式组对应的平面区域,利用线性规划的知识进行求解即可.

解答 解:z=$\frac{{x}^{2}+xy+{y}^{2}}{xy}$=$\frac{x}{y}$+$\frac{y}{x}$+1,
设t=$\frac{y}{x}$,则z=$\frac{x}{y}$+$\frac{y}{x}$+1=$\frac{1}{t}+t+1$,
作出不等式组$\left\{\begin{array}{l}{3x+y-7≥0}\\{x-y-1≤0}\\{x+y-5≤0}\end{array}\right.$,对应的平面区域如图:
则t=$\frac{y}{x}$的几何意义是区域内的点到原点的斜率,
由图象知OC的斜率最小,OB的斜率最大,
由$\left\{\begin{array}{l}{3x+y-7=0}\\{x+y-5=0}\end{array}\right.$得A(1,4),此时OA的斜率t=$\frac{4}{1}$=4,
由$\left\{\begin{array}{l}{x-y-1=0}\\{3x+y-7=0}\end{array}\right.$得B(2,1),此时OB的斜率t=$\frac{1}{2}$,
即$\frac{1}{2}$≤t≤4,
∵y=t+$\frac{1}{t}$+1在$\frac{1}{2}$≤t≤1上递减,在1≤t≤4递增,
∴当t=1时,函数取得最小值y=1+1+1=3,
当t=4或$\frac{1}{2}$时,y=4+$\frac{1}{4}$+1=$\frac{17}{4}$,y=2+$\frac{1}{2}+1$=$\frac{7}{2}$.
即3≤z≤$\frac{17}{4}$,
即z=$\frac{{x}^{2}+xy+{y}^{2}}{xy}$的取值范围是[3,$\frac{17}{4}$],
故答案为:[3,$\frac{17}{4}$].

点评 本题主要考查线性规划的应用,根据分式的性质,利用换元法进行转化结合基本不等式的性质是解决本题的关键.综合性较强,难度较大.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.已知正项等比数列{an}的前n项和为Sn,且S8-2S4=5,则a9+a10+a11+a12的最小值为(  )
A.10B.15C.20D.25

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.某同学同时投掷两颗骰子,得到点数分别为a,b,则椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1的离心率e>$\frac{\sqrt{3}}{2}$的概率是(  )
A.$\frac{1}{18}$B.$\frac{5}{36}$C.$\frac{1}{6}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.等比数列{an}中,a2,a6是方程x2-34x+64=0的两根,则a4等于(  )
A.8B.-8C.±8D.以上都不对

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.长春市的“名师云课”活动自开展以来获得广大家长和学子的高度赞誉,在我市推出的第二季名师云课中,数学学科共计推出36节云课,为了更好地将课程内容呈现给广大学子,现对某一时段云课的点击量进行统计:
点击量[0,1000](1000,3000](3000,+∞)
节数61812
(Ⅰ)现从36节云课中采用分层抽样的方式选出6节,求选出的点击量超过3000的节数.
(Ⅱ)为了更好地搭建云课平台,现将云课进行剪辑,若点击量在区间[0,1000]内,则需要花费40分钟进行剪辑,若点击量在区间(1000,3000]内,则需要花费20分钟进行剪辑,点击量超过3000,则不需要剪辑,现从(Ⅰ)中选出的6节课中任意取出2节课进行剪辑,求剪辑时间为40分钟的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知集合A={x|1<x<3},集合B={y|y=x-2,x∈A},则集合A∩B=(  )
A.{x|1<x<3}B.{x|-1<x<3}C.{x|-1<x<1}D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.函数f(x)=6cos2$\frac{ωx}{2}+\sqrt{3}$sinωx-3(ω>0)在一个周期内的图象如图所示,A为图象的最高点,B、C为图象与l轴的交点,且△ABC为正三角形.
(Ⅰ)求f(x)解析式及其值域;
(Ⅱ)若f(x0)=$\frac{8\sqrt{3}}{5}$,且x0∈(-$\frac{10}{3}$,$\frac{2}{3}$),求f(x0+1)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.函数$y=1-2x-\frac{3}{x-1}(x<1)$的最小值为2$\sqrt{6}$-1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知x与y之间的一组数据:
x1234
ym3.24.87.5
若y关于x的线性回归方程为$\widehat{y}$=2.1x-1.25,则m的值为0.5.

查看答案和解析>>

同步练习册答案