精英家教网 > 高中数学 > 题目详情
6.长春市的“名师云课”活动自开展以来获得广大家长和学子的高度赞誉,在我市推出的第二季名师云课中,数学学科共计推出36节云课,为了更好地将课程内容呈现给广大学子,现对某一时段云课的点击量进行统计:
点击量[0,1000](1000,3000](3000,+∞)
节数61812
(Ⅰ)现从36节云课中采用分层抽样的方式选出6节,求选出的点击量超过3000的节数.
(Ⅱ)为了更好地搭建云课平台,现将云课进行剪辑,若点击量在区间[0,1000]内,则需要花费40分钟进行剪辑,若点击量在区间(1000,3000]内,则需要花费20分钟进行剪辑,点击量超过3000,则不需要剪辑,现从(Ⅰ)中选出的6节课中任意取出2节课进行剪辑,求剪辑时间为40分钟的概率.

分析 (Ⅰ)根据分层抽样求出选出的点击量超过3000的节数即可;
(Ⅱ)求出选出两节课的选法共15种,其中剪辑时间为40分钟的情况有5共5种,

解答 解:(Ⅰ)根据分层抽样,$\frac{12}{36}$×6=2,
故选出的6节课中有2节点击量超过3000.
(Ⅱ)在(Ⅰ)中选出的6节课中,设点击量在区间[0,1000]内的是1节,
点击量在区间[1000,3000]内的是3节,点击量超过3000的是2节,
从中选出两节课的选法共${C}_{6}^{2}$=15种,其中剪辑时间为40分钟的情况共${{C}_{1}^{1}C}_{2}^{1}{+C}_{3}^{2}$=5种,
则剪辑时间为40分钟的概率为:$\frac{5}{15}$=$\frac{1}{3}$.

点评 本小题主要考查学生对抽样的理解,以及古典概型的相关知识,同时考查学生的数据处理能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.数列{an}的前n项和为Sn,且满足${S_n}=\frac{3}{2}{a_n}-\frac{1}{2}$,a1=1.
(1)求数列{an}的通项公式;
(2)若${b_n}=\frac{1}{{{{log}_3}{a_{n+1}}•{{log}_3}{a_{n+2}}}}$,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.若一个几何体的三视图如图所示,则该几何体的外接球的体积为(  )
A.$\frac{\sqrt{6}}{2}$πB.$\frac{\sqrt{5}}{2}$πC.$\frac{\sqrt{2}}{2}$πD.$\frac{\sqrt{3}}{2}$π

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.为了解三明市XX中学高二文科学生的数学水平,从该中学高二文科学生中随机抽取了20名学生的期中考数学成绩,成绩(单位:分;满分:100分)的频率分布直方图如图:
(Ⅰ)求频率分布直方图中a值,并由这20名学生成绩估计该中学数学期中考的平均成绩;
(Ⅱ)现年段长从成绩在70分以下(不含70分)的学生中选2人谈话,求恰有1人成绩在区间[60,70)内的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.集合{a,b,c}的子集的个数为(  )
A.4B.7C.8D.16

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知点P(x,y)满足不等式组$\left\{\begin{array}{l}{3x+y-7≥0}\\{x-y-1≤0}\\{x+y-5≤0}\end{array}\right.$,则z=$\frac{{x}^{2}+xy+{y}^{2}}{xy}$的范围是[3,$\frac{17}{4}$].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.如图为一个求10个数的平均数的程序,在横线上应填充的语句为(  )
A.i>10B.i<10C.i>=10D.i<=10

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=$\frac{2}{3}$x3-2ax2-3x(a∈R),若函数f(x)的图象上点P(1,m)处的切线方程为3x-y+b=0,(1)求a、m的值;(2)求点P处的切线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.下列命题中,真命题的个数是(  )
$\begin{array}{l}(1)若a>b,则ac>bc.(2)若a>b,则a{c^2}>b{c^2}.\\(3)若a{c^2}>b{c^2},则a>b.(4)若a>b,则{e^a}>{e^b}.\end{array}$.
A.1B.2C.3D.4

查看答案和解析>>

同步练习册答案