精英家教网 > 高中数学 > 题目详情
9.已知集合A={x|1<x<3},集合B={y|y=x-2,x∈A},则集合A∩B=(  )
A.{x|1<x<3}B.{x|-1<x<3}C.{x|-1<x<1}D.

分析 根据集合A中的x的范围求出y的范围确定出B,求出A与B的交集即可.

解答 解:∵A={x|1<x<3},B={y|y=x-2,x∈A}={y|-1<y<1},
∴A∩B=∅,
故选:D.

点评 此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.现有这么一列数,2,$\frac{3}{2}$,$\frac{5}{4}$,$\frac{7}{8}$,(  ),$\frac{13}{32}$,$\frac{17}{64}$,…,按照规律,(  )中的数应为$\frac{11}{16}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知函数f(x)是定义在R上的奇函数且单调递增,则不等式f(x)<f(x2)的解集是(  )
A.(-∞,0)∪(1,+∞)B.(-∞,0)∪[1,+∞)C.(-∞,0]∪[1,+∞)D.(-∞,0)∪(0,1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.长春市的“名师云课”活动自开展以来获得广大家长和学生的高度赞誉,在我市推出的第二季名师云课中,数学学科共计推出36节云课,为了更好地将课程内容呈现给学生,现对某一时段云课的点击量进行统计:
点击量[0,1000](1000,3000](3000,+∞)
节数61812
(Ⅰ)现从36节云课中采用分层抽样的方式选出6节,求选出的点击量超过3000的节数.
(Ⅱ)为了更好地搭建云课平台,现将云课进行剪辑,若点击量在区间[0,1000]内,则需要花费40分钟进行剪辑,若点击量在区间(1000,3000]内,则需要花费20分钟进行剪辑,点击量超过3000,则不需要剪辑,现从(Ⅰ)中选出的6节课中随机取出2节课进行剪辑,求剪辑时间X的分布列与数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知点P(x,y)满足不等式组$\left\{\begin{array}{l}{3x+y-7≥0}\\{x-y-1≤0}\\{x+y-5≤0}\end{array}\right.$,则z=$\frac{{x}^{2}+xy+{y}^{2}}{xy}$的范围是[3,$\frac{17}{4}$].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知在平面直角坐标系xoy中,直线x-ky+2k-1=0与圆x2+y2=4交于A,B两点,若在该圆上还存在一点C,使得$\overrightarrow{OC}=\overrightarrow{OA}+\overrightarrow{OB}$成立,则实数k的值为(  )
A.0B.$\frac{4}{3}$C.0或$\frac{4}{3}$D.0或$-\frac{4}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知角α的终边经过点P(3,-4),则角α的正切值为(  )
A.$\frac{3}{4}$B.-4C.$-\frac{4}{3}$D.$\frac{3}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.函数y=2+sinx($\frac{π}{6}≤x≤\frac{2π}{3}$)的值域是[$\frac{5}{2}$,3].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.在△ABC中,角A,B,C所对的边分别为a,b,c,向量$\overrightarrow{m}$=(a,-b),$\overrightarrow{n}$=(sinB,$\sqrt{3}$cosA)垂直,
(1)求角A;
(2)若a=7,c=8,则b边是多少?

查看答案和解析>>

同步练习册答案