精英家教网 > 高中数学 > 题目详情
19.在△ABC中,角A,B,C所对的边分别为a,b,c,向量$\overrightarrow{m}$=(a,-b),$\overrightarrow{n}$=(sinB,$\sqrt{3}$cosA)垂直,
(1)求角A;
(2)若a=7,c=8,则b边是多少?

分析 (1)根据向量垂直坐标之间的关系建立等式,利用正弦定理化简即可求解A;
(2)利用余弦定理求解b即可.

解答 解:(1)向量$\overrightarrow{m}$=(a,-b),$\overrightarrow{n}$=(sinB,$\sqrt{3}$cosA)垂直,
可得:asinB-b$\sqrt{3}$cosA=0,
即asinB=b$\sqrt{3}$cosA.
正弦定理可得:sinAsinB=$\sqrt{3}$sinBcosA.
∵0<B<π,sinB≠0,
∴tanA=$\sqrt{3}$.
∵0<A<π,
∴A=$\frac{π}{3}$.
(2)由(1)可知A=$\frac{π}{3}$,a=7,c=8,
余弦定理可得:a2=b2+c2-2bccosA,
即:b2-8b+15=0,
解得:b=3或5.
故得b是3或5.

点评 本题考查了向量的运算和余弦定理的运用.属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.已知集合A={x|1<x<3},集合B={y|y=x-2,x∈A},则集合A∩B=(  )
A.{x|1<x<3}B.{x|-1<x<3}C.{x|-1<x<1}D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.在极坐标系中曲线C的极坐标方程为ρsin2θ-cosθ=0,点$M({1,\frac{π}{2}})$.以极点O为原点,以极轴为x轴正半轴建立直角坐标系.斜率为-1的直线l过点M,且与曲线C交于A,B两点.
(1)求曲线C和直线l的直角坐标方程;
(2)求两点A,B之间的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.若对?a∈[$\frac{1}{{e}^{2}}$,1],?b∈[-1,1],使λ+alna=2b2eb(e是自然对数的底数),则实数λ的取值范围是(  )
A.[$\frac{1}{e}$,2e]B.[$\frac{1}{e}$,$\frac{2}{e}$]C.[$\frac{3}{e}$,2e]D.[$\frac{3}{e}$,$\frac{8}{{e}^{2}}$]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知x与y之间的一组数据:
x1234
ym3.24.87.5
若y关于x的线性回归方程为$\widehat{y}$=2.1x-1.25,则m的值为0.5.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图所示的多面体ABCDEF,四边形ABCD是边长为2的正方形,面BDFE⊥面ABCD,四边形BDFE为矩形,BE长为a,M为AE的中点,AC∩BD=O.
(1)求证:OM∥平面ADF;
(2)若BF⊥AE,求三棱锥E-BOM的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=ax3+bx2+cx有极大值5,其导函数y=f′(x)的图象经过(1,0),(2,0)点,如图所示.
(1)求原函数取得极大值时x的值(要求列表说明);
(2)求a,b,c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.据市场调查,某种商品一年内每件出厂价在7千元的基础上,按月呈f(x)=Asin(ωx+φ)+b(b>0,ω>0,|φ|<$\frac{π}{2}$)的模型波动(x为月份),已知3月份达到最高价9千元,7月份价格最低为5千元,根据以上条件可确定f(x)的解析式为(  )
A.f(x)=2sin($\frac{π}{4}$x-$\frac{π}{4}$)+7(1≤x≤12,x∈N+B.f(x)=9sin($\frac{π}{4}$x-$\frac{π}{4}$)+7(1≤x≤12,x∈N+
C.f(x)=2$\sqrt{2}$sin$\frac{π}{4}$x+7(1≤x≤12,x∈N+D.f(x)=2sin($\frac{π}{4}$x+$\frac{π}{4}$)+7(1≤x≤12,x∈N+

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.函数f(x)=x3+ax-2在区间[1,+∞)上单调递增,则实数a的取值范围是(  )
A.[3,+∞)B.(-3,+∞)C.[-3,+∞)D.(-∞,3]

查看答案和解析>>

同步练习册答案