精英家教网 > 高中数学 > 题目详情
11.已知函数f(x)=ax3+bx2+cx有极大值5,其导函数y=f′(x)的图象经过(1,0),(2,0)点,如图所示.
(1)求原函数取得极大值时x的值(要求列表说明);
(2)求a,b,c的值.

分析 (1)观察图象满足f′(x)=0的点附近的导数的符号的变化情况,来确定极大值,求出x0的值;
(2)根据图象可得f'(1)=0,f'(2)=0,f(1)=5,建立三个方程,联立方程组求解即可.

解答 解:(1)由图象可知,

x(-∞,1)1(1,2)(2,+∞)
f′(x)+0-+
f(x)递增极大值递减递增
在(-∞,1)上f'(x)>0,在(1,2)上f'(x)<0.在(2,+∞)上f'(x)>0.
故f(x)在(-∞,1),(2,+∞)上递增,在(1,2)上递减.
因此f(x)在x=1处取得极大值,所以x=1.
(2)f'(x)=3ax2+2bx+c,
由f'(1)=0,f'(2)=0,f(1)=5,
得 $\left\{\begin{array}{l}{3a+2b+c=0}\\{12a+4b+c=0}\\{a+b+c=5}\end{array}\right.$,
解得a=2,b=-9,c=12.

点评 本题主要考查了利用导数研究函数的极值,以及观察图形的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.已知角α的终边经过点P(3,-4),则角α的正切值为(  )
A.$\frac{3}{4}$B.-4C.$-\frac{4}{3}$D.$\frac{3}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图所示,两个非共线向量$\overrightarrow{OA}$,$\overrightarrow{OB}$的夹角为θ,M、N分别为OA与OB的中点,点C在直线MN上,且$\overrightarrow{OC}$=x$\overrightarrow{OA}$+y$\overrightarrow{OB}$(x,y∈R),则x2+y2的最小值为$\frac{1}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.在△ABC中,角A,B,C所对的边分别为a,b,c,向量$\overrightarrow{m}$=(a,-b),$\overrightarrow{n}$=(sinB,$\sqrt{3}$cosA)垂直,
(1)求角A;
(2)若a=7,c=8,则b边是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.若2m+n=1,其中mn>0,则$\frac{1}{m}$+$\frac{2}{n}$的最小值为8.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.在四边形ABCD中,已知BC=2,DC=4,且∠A:∠ABC:∠C:∠ADC=3:7:4:10
(1)求BD的长;
(2)求AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知公差不为0的等差数列{an}满足:a1=2,且a1,a2,a5成等比数列,则数列{an}的通项公式为(  )
A.an=2B.an=nC.an=4nD.an=4n-2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.设向量$\overrightarrow{a}$=(-1,2),$\overrightarrow{b}$=(m,1),若向量$\overrightarrow{a}$+2$\overrightarrow{b}$与2$\overrightarrow{a}$-$\overrightarrow{b}$平行,则m=$-\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.在平面直角坐标系xOy中,以原点O为极点,x轴的正半轴为极轴建立极坐标系,已知曲线C1的极坐标方程为${ρ^2}-2\sqrt{2}ρsin({θ-\frac{π}{4}})-2=0$,曲线C2的极坐标方程为$θ=\frac{π}{4}({ρ∈R})$,C1与C2相交于A,B两点.
(1)把C1和C2的方程化为直角坐标方程,并求点A,B的直角坐标;
(2)若P为C1上的动点,求|PA|2+|PB|2的取值范围.

查看答案和解析>>

同步练习册答案