精英家教网 > 高中数学 > 题目详情
3.已知公差不为0的等差数列{an}满足:a1=2,且a1,a2,a5成等比数列,则数列{an}的通项公式为(  )
A.an=2B.an=nC.an=4nD.an=4n-2

分析 设出公差为d(d≠0),运用等比数列中项的性质和等差数列的通项公式,解方程即可得到公差d,再由等差数列的通项公式即可得到所求.

解答 解:公差d不为0的等差数列{an}满足:a1=2,且a1,a2,a5成等比数列,
可得a22=a1a5
即为(a1+d)2=a1(a1+4d),
则(2+d)2=2(2+4d),
解得d=4(0舍去),
则an=a1+(n-1)d=2+4(n-1)=4n-2.
故选:D.

点评 本题考查等差数列的通项公式和等比数列中项的性质的运用,考查方程思想和运算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.函数$y=1-2x-\frac{3}{x-1}(x<1)$的最小值为2$\sqrt{6}$-1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知x与y之间的一组数据:
x1234
ym3.24.87.5
若y关于x的线性回归方程为$\widehat{y}$=2.1x-1.25,则m的值为0.5.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=ax3+bx2+cx有极大值5,其导函数y=f′(x)的图象经过(1,0),(2,0)点,如图所示.
(1)求原函数取得极大值时x的值(要求列表说明);
(2)求a,b,c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若函数f(x)=x2+2(a-1)x+2在区间(-∞,4]内递减,那么实数a的取值范围为(  )
A.a≤-3B.a≥-3C.a≤5D.a≥3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.据市场调查,某种商品一年内每件出厂价在7千元的基础上,按月呈f(x)=Asin(ωx+φ)+b(b>0,ω>0,|φ|<$\frac{π}{2}$)的模型波动(x为月份),已知3月份达到最高价9千元,7月份价格最低为5千元,根据以上条件可确定f(x)的解析式为(  )
A.f(x)=2sin($\frac{π}{4}$x-$\frac{π}{4}$)+7(1≤x≤12,x∈N+B.f(x)=9sin($\frac{π}{4}$x-$\frac{π}{4}$)+7(1≤x≤12,x∈N+
C.f(x)=2$\sqrt{2}$sin$\frac{π}{4}$x+7(1≤x≤12,x∈N+D.f(x)=2sin($\frac{π}{4}$x+$\frac{π}{4}$)+7(1≤x≤12,x∈N+

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.在平面直角坐标系xOy中,直线l的参数方程为$\left\{\begin{array}{l}x=1-\frac{\sqrt{2}}{2}t\\ y=2+\frac{\sqrt{2}}{2}t\end{array}$(t为参数),以坐标原点O为极点,x轴正半轴为极轴的极坐标系中,曲线C的极坐标方程为ρsin2θ-4cos θ=0,已知直线l与曲线C相交于A,B两点,求线段AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知f(x)是定义在[-n,n]上的奇函数,且f(x)在[-n,n]上的最大值为a,则函数F(x)=f(x)+3在[-n,n]上的最大值与最小值之和为6.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.下列函数中,最小正周期为$\frac{π}{2}$的是(  )
A.y=sinxB.y=sinxcosxC.y=tan2πD.y=cos4x

查看答案和解析>>

同步练习册答案