É躯Êýf£¨x£©=a2x2£¨a£¾0£©£¬g£¨x£©=blnx£®
£¨1£©½«º¯Êýy=f£¨x£©Í¼ÏóÏòÓÒƽÒÆÒ»¸öµ¥Î»¼´¿ÉµÃµ½º¯Êýy=¦Õ£¨x£©µÄͼÏó£¬ÊÔд³öy=¦Õ£¨x£©µÄ½âÎöʽ¼°ÖµÓò£»
£¨2£©¹ØÓÚxµÄ²»µÈʽ£¨x-1£©2£¾f£¨x£©µÄ½â¼¯ÖеÄÕûÊýÇ¡ÓÐ3¸ö£¬ÇóʵÊýaµÄÈ¡Öµ·¶Î§£»
£¨3£©¶ÔÓÚº¯Êýf£¨x£©Óëg£¨x£©¶¨ÒåÓòÉϵÄÈÎÒâʵÊýx£¬Èô´æÔÚ³£Êýk£¬m£¬Ê¹µÃf£¨x£©¡Ýkx+mºÍg£¨x£©¡Ükx+m¶¼³ÉÁ¢£¬Ôò³ÆÖ±Ïßy=kx+mΪº¯Êýf£¨x£©Óëg£¨x£©µÄ¡°·Ö½çÏß¡±£®Éèa=
2
2
£¬b=e£¬ÊÔ̽¾¿f£¨x£©Óëg£¨x£©ÊÇ·ñ´æÔÚ¡°·Ö½çÏß¡±£¿Èô´æÔÚ£¬Çó³ö¡°·Ö½çÏß¡±µÄ·½³Ì£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®
·ÖÎö£º£¨1£©Óɺ¯ÊýͼÏóµÄ±ä»»¿ÉµÃ ¦Õ£¨x£©=a2 £¨x-1£©2 £¬ÖµÓòΪ[0£¬+¡Þ£©£®
£¨2£©ÓÉÌâÒâ¿ÉµÃ£¨1-a2£© x2-2x+1£¾0 Ç¡ÓÐÈý¸öÕûÊý½â£¬¹Ê 1-a2£¼0£¬ÔÙÓÉ£¨1-a2£© x2-2x+1£¾0£¬ÇóµÃʵÊýaµÄ
È¡Öµ·¶Î§£®
£¨3£©ÉèF£¨x£©=f£¨x£©-g£¨x£©=
1
2
x2-elnx£¬ÀûÓõ¼Êý֪ʶÅжϵ¥µ÷ÐÔ£¬Çó³ö x=
e
ʱ£¬F£¨x£© È¡µÃ×îСֵ0£®
Éèf£¨x£©Óëg£¨x£©´æÔÚ¡°·Ö½çÏß¡±£¬·½³ÌΪ y=kx+
e
2
-k
e
£¬ÓÉ f£¨x£©¡Ýkx+
e
2
-k
e
£¬¶Ôx¡ÊRºã³ÉÁ¢£¬ÇóµÃk=
e
£®
ÔÙÀûÓõ¼ÊýÖ¤Ã÷g£¨x£©¡Ü
e
x
-
e
2
£¨x£¾0£©ºã³ÉÁ¢£¬´Ó¶øµÃµ½ËùÇó¡°·Ö½çÏß¡±·½³Ì£®
½â´ð£º½â£º£¨1£©ÓÉÌâÒâ¿ÉµÃ ¦Õ£¨x£©=a2 £¨x-1£©2 £¬ÖµÓòΪ[0£¬+¡Þ£©£®  ¡­£¨2·Ö£©
£¨2£©²»µÈʽ£¨x-1£©2£¾f£¨x£©µÄ½â¼¯ÖеÄÕûÊýÇ¡ÓÐ3¸ö£¬
µÈ¼ÛÓÚ£¨1-a2£© x2-2x+1£¾0 Ç¡ÓÐÈý¸öÕûÊý½â£¬¹Ê 1-a2£¼0£¬¼´ a£¾1£¬
¡à£¨1-a2£© x2-2x+1=[£¨£¨1-a£©x-1][£¨1+a£©x-1]£¾0£¬
ËùÒÔ
1
1-a
£¼x£¼
1
1+a
£¬ÓÖÒòΪ 0£¼
1
1+a
£¼1
£¬
ËùÒÔ -3¡Ü
1
1+a
£¼-2
£¬½âÖ®µÃ 
4
3
¡Üa£¼
3
2
£®  ¡­£¨6·Ö£©
£¨3£©ÉèF£¨x£©=f£¨x£©-g£¨x£©=
1
2
 x2-elnx£¬Ôò F¡ä£¨x£©=x-
e
x
=
(x-
e
)(x+
e
)
x
£®
ËùÒÔµ± 0£¼x£¼
e
 Ê±£¬F¡ä£¨x£©£¼0£»µ± x£¾
e
 Ê±£¬F¡ä£¨x£©£¾0£®
Òò´Ë x=
e
 Ê±£¬F£¨x£© È¡µÃ×îСֵ0£¬
Ôò f£¨x£©Óëg£¨x£©µÄͼÏóÔÚx=
e
´¦Óй«¹²µã £¨
e
£¬
e
2
£©£®   ¡­£¨8·Ö£©
Éèf£¨x£©Óëg£¨x£©´æÔÚ¡°·Ö½çÏß¡±£¬·½³ÌΪ y-
e
2
=k£¨x-
e
£©£¬¼´ y=kx+
e
2
-k
e
£¬
ÓÉ f£¨x£©¡Ýkx+
e
2
-k
e
£¬¶Ôx¡ÊRºã³ÉÁ¢£¬
Ôò x2-2kx-e+2k
e
¡Ý0 ÔÚx¡ÊRºã³ÉÁ¢£®
ËùÒÔ¡÷=4k2-4£¨2k
e
-e£©=4(k-
e
)
2
¡Ü0³ÉÁ¢£¬Òò´Ë k=
e
£®¡­£¨10·Ö£©
ÏÂÃæÖ¤Ã÷ g£¨x£©¡Ü
e
x
-
e
2
 £¨x£¾0£©ºã³ÉÁ¢£®
ÉèG£¨x£©=elnx-x
e
+
e
2
£¬Ôò G¡ä£¨x£©=
e
x
-
e
=
e
(
e
-x)
x
£®
ËùÒÔµ±  0£¼x£¼
e
ʱ£¬G¡ä£¨x£©£¾0£»µ±  x£¾
e
ʱ£¬G¡ä£¨x£©£¼0£®
Òò´Ë x=
e
ʱ£¬G£¨x£©È¡µÃ×î´óÖµ0£¬Ôò g£¨x£©¡Ü
e
x
-
e
2
£¨x£¾0£©³ÉÁ¢£®
¹ÊËùÇó¡°·Ö½çÏß¡±·½³ÌΪ£ºy=
e
x
-
e
2
£®¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡­£¨14·Ö£©
µãÆÀ£º±¾ÌâÖ÷Òª¿¼²éƽÒÆ£¬ÖµÓò£¬½âÕûʽºÍ·Öʽ²»µÈʽ£¬ÇÐÏß·½³ÌµÄÇ󷨣¬µ¼Êý֪ʶÅжϵ¥µ÷ÐÔ¼°ÆäÓ¦Ó㬴æÔÚÐÔ£¬ÒÔ¼°Ì½Ë÷¡¢µÈ¼Ûת»¯ºÍÍÆÀíÖ¤Ã÷ÄÜÁ¦£¬½â¾ö×ÛºÏÎÊÌâµÄÄÜÁ¦£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

É躯Êýf£¨x£©=x-aex-1£®
£¨¢ñ£©Çóº¯Êýf£¨x£©µ¥µ÷Çø¼ä£»
£¨¢ò£©Èôf£¨x£©¡Ü0¶Ôx¡ÊRºã³ÉÁ¢£¬ÇóaµÄÈ¡Öµ·¶Î§£»
£¨¢ó£©¶ÔÈÎÒânµÄ¸öÕýÕûÊýa1£¬a2£¬¡­an¼ÇA=
a1+a2+¡­+an
n

£¨1£©ÇóÖ¤£º
ai
A
¡Üe
ai
A
-1
£¨i=1£¬2£¬3¡­n£©£¨2£©ÇóÖ¤£ºA¡Ý
na1a2¡­an
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÊýÁÐ{an}µÄÇ°nÏîºÍSnºÍͨÏîanÂú×ãSn=
q
q-1
(an-1)
£¨qÊdz£ÊýÇÒq£¾0£¬q¡Ù1£¬£©£®
£¨1£©ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨2£©µ±q=
1
3
ʱ£¬ÊÔÖ¤Ã÷a1+a2+¡­+an£¼
1
2
£»
£¨3£©É躯Êýf£¨x£©=logqx£¬bn=f£¨a1£©+f£¨a2£©+¡­+f£¨an£©£¬ÊÇ·ñ´æÔÚÕýÕûÊým£¬Ê¹
1
b1
+
1
b2
+¡­+
1
bn
¡Ý
m
3
¶ÔÈÎÒân¡ÊN*¶¼³ÉÁ¢£¿Èô´æÔÚ£¬Çó³ömµÄÖµ£¬Èô²»´æÔÚ£¬ËµÃ÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

É躯Êýf£¨x£©=ax2+bx+c£¨a£¾0£©£¬ÇÒf£¨1£©=-
a2
£®
£¨1£©ÇóÖ¤£ºº¯Êýf£¨x£©ÓÐÁ½¸öÁãµã£®
£¨2£©Éèx1£¬x2ÊǺ¯Êýf£¨x£©µÄÁ½¸öÁãµã£¬Çó|x1-x2|µÄ·¶Î§£®
£¨3£©ÇóÖ¤£ºº¯Êýf£¨x£©µÄÁãµãx1£¬x2ÖÁÉÙÓÐÒ»¸öÔÚÇø¼ä£¨0£¬2£©ÄÚ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

É躯Êýf£¨x£©=|x+1|+|x+2|+¡­+|x+2010|+|x-1|+|x-2|+¡­+|x-2010|£¨x¡ÊR£©ËÄλͬѧÑо¿µÃ³öÈçÏÂËĸöÃüÌ⣬ÆäÖÐÕæÃüÌâµÄÓУ¨¡¡¡¡£©¸ö
¢Ùf£¨x£©ÊÇżº¯Êý£»
¢Úf£¨x£©ÔÚ£¨0£¬+¡Þ£©µ¥µ÷µÝÔö£»
¢Û²»µÈʽf£¨x£©£¼2010¡Á2011µÄ½â¼¯Îª∅£»
¢Ü¹ØÓÚʵÊýaµÄ·½³Ìf£¨a2-3a+2£©=f£¨a-1£©ÓÐÎÞÊý½â£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2006•º¼ÖÝһģ£©É躯Êýf£¨x£©=
x2
ax-2
£¨a¡ÊN*£©£¬ÓÖ´æÔÚ·ÇÁã×ÔÈ»Êým£¬Ê¹µÃf£¨m£©=m£¬f£¨-m£©£¼-
1
m
³ÉÁ¢£®
£¨1£©Çóº¯Êýf£¨x£©µÄ±í´ïʽ£»
£¨2£©Éè{an}ÊǸ÷Ïî·ÇÁãµÄÊýÁУ¬Èôf(
1
an
)=
1
4(a1+a2+¡­+an)
¶ÔÈÎÒân¡ÊN*³ÉÁ¢£¬ÇóÊýÁÐ{an}µÄÒ»¸öͨÏʽ£»
£¨3£©ÔÚ£¨2£©µÄÌõ¼þÏ£¬ÊýÁÐ{an}ÊÇ·ñΩһȷ¶¨£¿Çë¸ø³öÅжϣ¬²¢ÓèÒÔÖ¤Ã÷£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸