精英家教网 > 高中数学 > 题目详情

【题目】已知直线l:kx﹣y+1+2k=0(k∈R) (Ⅰ)证明直线l经过定点并求此点的坐标;
(Ⅱ)若直线l不经过第四象限,求k的取值范围;
(Ⅲ)若直线l交x轴负半轴于点A,交y轴正半轴于点B,O为坐标原点,设△AOB的面积为S,求S的最小值及此时直线l的方程.

【答案】解:(I)证明:直线l:kx﹣y+1+2k=0(k∈R),化为:k(x+2)﹣y+1=0,令 ,解得x=﹣2,y=1. ∴直线l经过定点(﹣2,1).
(Ⅱ)由直线l不经过第四象限,y=kx+2k+1.
则k≥0,
(Ⅲ)直线l交x轴负半轴于点A,交y轴正半轴于点B,O为坐标原点,设△AOB的面积为S,
由直线l的方程kx﹣y+1+2k=0可得与坐标轴的交点A ,B(0,1+2k), ,k≠0,解得:k>0.
∴S= ×|1+2k|= = =4,当且仅当k= 时取等号.
S的最小值为4,及此时直线l的方程为:x﹣2y+4=0
【解析】(I)直线l:kx﹣y+1+2k=0(k∈R),化为:k(x+2)﹣y+1=0,令 ,解出即可得出.(Ⅱ)由直线l不经过第四象限,y=kx+2k+1.即可得出.(Ⅲ)直线l交x轴负半轴于点A,交y轴正半轴于点B,O为坐标原点,设△AOB的面积为S,由直线l的方程kx﹣y+1+2k=0可得与坐标轴的交点A ,B(0,1+2k), ,k≠0,解得:k>0.故S= ×|1+2k|= ,利用基本不等式的性质即可得出.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】观察下列算式:13=1,23=3+5,33=7+9+11,43=13+15+17+19,…若某数n3按上述规律展开后,发现右边含有“2017”这个数,则:n=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x﹣ ﹣2lnx,a∈R.
(1)讨论函数f(x)的单调性;
(2)若函数f(x)有两个极值点x1 , x2 , 且x1<x2 , ①求a的取值范围;
②证明:f(x2)<x2﹣1.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】A,B两名同学在5次数学考试中的成绩统计如下面的茎叶图所示,若A,B两人的平均成绩分别是xA , xB , 观察茎叶图,下列结论正确的是(
A.xA<xB , B比A成绩稳定
B.xA>xB , B比A成绩稳定
C.xA<xB , A比B成绩稳定
D.xA>xB , A比B成绩稳定

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知奇函数f(x)在(﹣∞,0)∪(0,+∞)上有定义,在(0,+∞)上是增函数,f(1)=0,又知函数g(θ)=sin2θ+mcosθ﹣2m, ,集合M={m|恒有g(θ)<0},N={m|恒有f(g(θ))<0},求M∩N.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2017年3月14日,“ofo共享单车”终于来到芜湖,ofo共享单车又被亲切称作“小黄车”是全球第一个无桩共享单车平台,开创了首个“单车共享”模式.相关部门准备对该项目进行考核,考核的硬性指标是:市民对该项目的满意指数不低于0.8,否则该项目需进行整改,该部门为了了解市民对该项目的满意程度,随机访问了使用共享单车的100名市民,并根据这100名市民对该项目满意程度的评分,绘制了如下频率分布直方图: (I)为了了解部分市民对“共享单车”评分较低的原因,该部门从评分低于60分的市民中随机抽取2人进行座谈,求这2人评分恰好都在[50,60)的概率;
(II)根据你所学的统计知识,判断该项目能否通过考核,并说明理由.
(注:满意指数=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

求函数的单调区间

时,若函数在区间内单调递减,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)=x3﹣ax2﹣a2x+1,(a∈R).
(Ⅰ)求f(x)的单调区间;
(Ⅱ)若f(x)的图象不存在与l:y=﹣x平行或重合的切线,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=ln(1+x),g(x)=xf′(x),x≥0,其中f′(x)是f(x)的导函数.
(1)g1(x)=g(x),gn+1(x)=g(gn(x)),n∈N+ , 求g1(x),g2(x),g3(x),并猜想gn(x)的表达式(不必证明);
(2)若f(x)≥ag(x)恒成立,求实数a的取值范围;
(3)设n∈N+ , 比较g(1)+g(2)+…+g(n)与n﹣f(n)的大小,并用数学归纳法加以证明.

查看答案和解析>>

同步练习册答案