【题目】如图,公园里有一湖泊,其边界由两条线段
和以
为直径的半圆弧
组成,其中
为2百米,
为
.若在半圆弧
,线段
,线段
上各建一个观赏亭
,再修两条栈道
,使
. 记
.
![]()
(1)试用
表示
的长;
(2)试确定点
的位置,使两条栈道长度之和最大.
【答案】(1)
;(2)
与
重合.
【解析】分析:(1)解直角三角形BDC用
表示
的长.(2)先利用正弦定理求出DF=4cosθsin(
+θ), 再求出DE=AF=4-4
,再利用三角函数求DE+DF的最大值.
详解:(1)连结DC.
在△ABC中,AC为2百米,AC⊥BC,∠A为
,
所以∠CBA=
,AB=4,BC=
.
因为BC为直径,所以∠BDC=
,
所以BD=BC cosθ=
cosθ.
(2)在△BDF中,∠DBF=θ+
,∠BFD=
,BD=
cosθ,
所以
,
所以DF=4cosθsin(
+θ),
且BF=4
,所以DE=AF=4-4
,
所以DE+DF=4-4
+4
sin(
+θ)=
sin2θθ+3
=2 sin(2θ-
)+3.
因为
≤θ<
,所以
≤2θ-
<
,
所以当2θ-
=
,即θ=
时,DE+DF有最大值5,此时E与C重合.
答:当E与C重合时,两条栈道长度之和最大.
科目:高中数学 来源: 题型:
【题目】
购买某种保险,每个投保人每年度向保险公司交纳保费
元,若投保人在购买保险的一年度内出险,则可以获得10 000元的赔偿金.假定在一年度内有10 000人购买了这种保险,且各投保人是否出险相互独立.已知保险公司在一年度内至少支付赔偿金10 000元的概率为
。
(Ⅰ)求一投保人在一年度内出险的概率
;
(Ⅱ)设保险公司开办该项险种业务除赔偿金外的成本为50 000元,为保证盈利的期望不小于0,求每位投保人应交纳的最低保费(单位:元)。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2017年春节期间,某服装超市举办了一次有奖促销活动,消费每超过600元(含600元),均可抽奖一次,抽奖方案有两种,顾客只能选择其中的一种.
方案一:从装有10个形状、大小完全相同的小球(其中红球3个,黑球7个)的抽奖盒中,一次性摸出3个球,其中奖规则为:若摸到3个红球,享受免单优惠;若摸出2个红球则打6折,若摸出1个红球,则打7折;若没摸出红球,则不打折.
方案二:从装有10个形状、大小完全相同的小球(其中红球3个,黑球7个)的抽奖盒中,有放回每次摸取1球,连摸3次,每摸到1次红球,立减200元.
(1)若两个顾客均分别消费了600元,且均选择抽奖方案一,试求两位顾客均享受免单优惠的概率;
(2)若某顾客消费恰好满1000元,试从概率的角度比较该顾客选择哪一种抽奖方案更合算?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
+
=1(a>b>0)上的点P到左,右两焦点F1,F2的距离之和为2
,离心率为
.
(1)求椭圆的标准方程;
(2)过右焦点F2的直线l交椭圆于A,B两点,若y轴上一点M(0,
)满足|MA|=|MB|,求直线l的斜率k的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】随着我国互联网信息技术的发展,网络购物已经成为许多人消费的一种重要方式,某市为了了解本市市民的网络购物情况,特委托一家网络公示进行了网络问卷调查,并从参与调查的10000名网民中随机抽取了200人进行抽样分析,得到了下表所示数据:
经常进行网络购物 | 偶尔或从不进行网络购物 | 合计 | |
男性 | 50 | 50 | 100 |
女性 | 60 | 40 | 100 |
合计 | 110 | 90 | 200 |
(1)依据上述数据,能否在犯错误的概率不超过
的前提下认为该市市民进行网络购物的情况与性别有关?
(2)现从所抽取的女性网民中利用分层抽样的方法再抽取
人,从这
人中随机选出
人赠送网络优惠券,求出选出的
人中至少有两人是经常进行网络购物的概率;
(3)将频率视为概率,从该市所有的参与调查的网民中随机抽取
人赠送礼物,记经常进行网络购物的人数为
,求
的期望和方差.
附:
,其中![]()
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com