精英家教网 > 高中数学 > 题目详情

【题目】如图公园里有一湖泊,其边界由两条线段和以为直径的半圆弧组成,其中为2百米,若在半圆弧,线段,线段上各建一个观赏亭,再修两条栈道,使. 记

(1)试用表示的长;

(2)试确定点的位置,使两条栈道长度之和最大.

【答案】(1);(2)重合.

【解析】分析:(1)解直角三角形BDC表示的长.(2)先利用正弦定理求出DF4cosθsin(θ) 再求出DEAF=44,再利用三角函数求DEDF的最大值.

详解:(1)连结DC

在△ABC中,AC为2百米,ACBC,∠A

所以∠CBAAB=4,BC

因为BC为直径,所以BDC

所以BDBC cosθcosθ

(2)在△BDF中,∠DBFθ,∠BFD=BDcosθ

所以

所以DF=4cosθsin(θ),

BF=4,所以DEAF=4-4

所以DEDF=4-4+4 sin(θ)= sin2θθ+3

=2 sin(2θ)+3.

因为θ,所以≤2θ

所以当2θ,即θ时,DEDF有最大值5,此时EC重合.

答:当EC重合时,两条栈道长度之和最大.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】

购买某种保险,每个投保人每年度向保险公司交纳保费元,若投保人在购买保险的一年度内出险,则可以获得10 000元的赔偿金.假定在一年度内有10 000人购买了这种保险,且各投保人是否出险相互独立.已知保险公司在一年度内至少支付赔偿金10 000元的概率为

)求一投保人在一年度内出险的概率

)设保险公司开办该项险种业务除赔偿金外的成本为50 000元,为保证盈利的期望不小于0,求每位投保人应交纳的最低保费(单位:元)。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2017年春节期间,某服装超市举办了一次有奖促销活动,消费每超过600元(含600元),均可抽奖一次,抽奖方案有两种,顾客只能选择其中的一种.

方案一:从装有10个形状、大小完全相同的小球(其中红球3个,黑球7个)的抽奖盒中,一次性摸出3个球,其中奖规则为:若摸到3个红球,享受免单优惠;若摸出2个红球则打6折,若摸出1个红球,则打7折;若没摸出红球,则不打折.

方案二:从装有10个形状、大小完全相同的小球(其中红球3个,黑球7个)的抽奖盒中,有放回每次摸取1球,连摸3次,每摸到1次红球,立减200元.

(1)若两个顾客均分别消费了600元,且均选择抽奖方案一,试求两位顾客均享受免单优惠的概率;

(2)若某顾客消费恰好满1000元,试从概率的角度比较该顾客选择哪一种抽奖方案更合算?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】过原点的直线被圆所截得的弦长为,则的倾斜角为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线.

(1)当时,求的单调区间;

(2)若对任意时,恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,抛物线的焦点为,点是抛物线上一点,且

(1)求的值;

(2)若为抛物线上异于的两点,且.记点到直线的距离分别为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)当时,求函数的极值;

(2)当时,若对任意都有,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆=1(a>b>0)上的点P到左,右两焦点F1F2的距离之和为2,离心率为.

(1)求椭圆的标准方程;

(2)过右焦点F2的直线l交椭圆于AB两点,若y轴上一点M(0,)满足|MA|=|MB|,求直线l的斜率k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着我国互联网信息技术的发展,网络购物已经成为许多人消费的一种重要方式,某市为了了解本市市民的网络购物情况,特委托一家网络公示进行了网络问卷调查,并从参与调查的10000名网民中随机抽取了200人进行抽样分析,得到了下表所示数据:

经常进行网络购物

偶尔或从不进行网络购物

合计

男性

50

50

100

女性

60

40

100

合计

110

90

200

(1)依据上述数据,能否在犯错误的概率不超过的前提下认为该市市民进行网络购物的情况与性别有关?

(2)现从所抽取的女性网民中利用分层抽样的方法再抽取人,从这人中随机选出人赠送网络优惠券,求出选出的人中至少有两人是经常进行网络购物的概率;

(3)将频率视为概率,从该市所有的参与调查的网民中随机抽取人赠送礼物,记经常进行网络购物的人数为,求的期望和方差.

附:,其中

查看答案和解析>>

同步练习册答案