精英家教网 > 高中数学 > 题目详情
10.(1)求值:0.064${\;}^{-\frac{1}{3}}$-(-$\frac{1}{8}$)0+16${\;}^{\frac{3}{4}}$+0.25${\;}^{\frac{1}{2}}$+2log36-log312;
(2)求值:cos$\frac{π}{3}$+tan$\frac{π}{4}$+3tan2$\frac{π}{6}$+sin$\frac{π}{2}$+cosπ+sin$\frac{3π}{2}$.

分析 (1)利用有理指数幂以及对数运算法则化简求解即可.
(2)利用特殊角的三角函数化简求值即可.

解答 (1)解:原式=$\frac{5}{2}-1+8+\frac{1}{2}+1=11$------(5分)
(2)解:原式=$\frac{1}{2}+1+3×(\frac{\sqrt{3}}{3})^{2}+1-1-1=\frac{3}{2}$------(5分)

点评 本题考查三角函数化简求值,对数运算法则以及有理指数幂的运算法则的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.如图,一个由半圆和长方形组成的铁皮,已知长方形的边AD为半圆的直径,O为半圆的圆心,AB=1,BC=2,现要将此铁皮剪成一个等腰三角形PMN,且底边MN⊥BC,求剪下的铁皮△PMN的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.设椭圆$\frac{x^2}{4}$+$\frac{y^2}{3}$=1的右焦点为F,斜率为k(k>0)的直线经过F并且与椭圆相交于点A,B.若5$\overrightarrow{AF}$=3$\overrightarrow{FB}$,则k的值为(  )
A.$\sqrt{3}$B.$\sqrt{5}$C.$2\sqrt{2}$D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知焦点在x轴上的椭圆$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0),焦距为2$\sqrt{3}$,长轴长为4.直线l与椭圆交于A,B两点,O为坐标原点,$\overrightarrow{OA}$•$\overrightarrow{OB}$=0,
(Ⅰ)求椭圆的标准方程;
(Ⅱ)证明:点O到直线AB的距离为定值,并求出这个定值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.为了让学生了解环保,增强环保意识,某中学举行了一次环保知识竞赛,共有900名学生参加了这次竞赛.为了了解本次竞赛的成绩情况,从中抽取了部分学生的成绩(得分取正整数,满分为100分)进行统计.请你根据下面尚未完成的频率分布表和频率分布直方图,解答下列问题:
分组频数频率
[50,60)40.08
[60,70)80.16
[70,80)100.20
[80,90)160.32
[90,100]
合计
(1)填充频率分布表中的空格;
(2)不具体计算$\frac{频率}{组距}$,补全频率分布直方图.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.直角坐标系原点与极坐标系的极点重合,x的正半轴为极轴.直线l经过点P(-1,1),直线的倾斜角α=$\frac{5π}{6}$,曲线C的极坐标方程为ρ=4sinθ.
(Ⅰ)求直线l的参数方程和曲线C的直角坐标方程;
(Ⅱ)设直线l与曲线C相交于A,B两点,求$\overrightarrow{PA}$•$\overrightarrow{PB}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在平面直角坐标系xOy中,点P到F1(0,-$\sqrt{3}$)、F2(0,$\sqrt{3}$)两点的距离之和等于4.设点P的轨迹为C.
(1)求轨迹C的方程;
(2)设直线l:y=kx+1与曲线C交于A、B两点,当k为何值时|$\overrightarrow{OA}$+$\overrightarrow{OB}$|=|$\overrightarrow{AB}$|(O为坐标原点)此时|$\overrightarrow{AB}$|的值是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.函数f(x)=ax与g(x)=logax(a>1)的图象交点个数为(  )
A.没有交点B.一个交点C.两个交点D.以上都不对

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.(1)已知△ABC顶点A(4,4),B(5,3),C(1,1),求△ABC外接圆的方程.
(2)求圆心在x轴上,且与直线l1:4x-3y+5=0,直线l2:3x-4y-5=0都相切的圆的方程.

查看答案和解析>>

同步练习册答案