精英家教网 > 高中数学 > 题目详情
20.如图,一个由半圆和长方形组成的铁皮,已知长方形的边AD为半圆的直径,O为半圆的圆心,AB=1,BC=2,现要将此铁皮剪成一个等腰三角形PMN,且底边MN⊥BC,求剪下的铁皮△PMN的面积的最大值.

分析 设∠MOQ=θ,由θ∈[0,$\frac{π}{2}$],结合锐角三角函数的定义可求MQ=sinθ,OQ=cosθ,代入三角形的面积公式S△PMN=$\frac{1}{2}$MN•AQ=$\frac{1}{2}$(1+sinθ)(1+cosθ)展开利用换元法,转化为二次函数的最值求解.

解答 解:设∠MOQ=θ,∴θ∈[0,$\frac{π}{2}$],MQ=sinθ,OQ=cosθ
∴S△PMN=$\frac{1}{2}$MN•AQ=$\frac{1}{2}$(1+sinθ)(1+cosθ)
=$\frac{1}{2}$(1+sinθcosθ+sinθ+cosθ)….(6分)
令sinθ+cosθ=t∈[1,$\sqrt{2}$],
∴S△PMN=$\frac{1}{2}$(t+1+$\frac{{t}^{2}-1}{2}$)
θ=$\frac{π}{4}$,当t=$\sqrt{2}$,
∴S△PMN的最大值为$\frac{3+2\sqrt{2}}{4}$.…(11分)

点评 本题主要考查了三角函数的定义的应用及利用三角函数求解函数的最值,换元法的应用是求解的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.某校从参加高二年级学业水平测试的学生中抽出80名学生,其数学成绩(均为整数)的频率分布直方图如图所示.估计这次测试中数学成绩的平均分为72.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.下列四个函数中,在(0,+∞)上为增函数的是(  )
A.f(x)=3-xB.f(x)=x2-3xC.$f(x)=-\frac{3}{x+2}$D.f(x)=-|x|

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知函数f(x)=$\frac{{{x^2}+2x+a}}{x}$,当x≥1时f(x)>0恒成立,则实数a的取值范围是(  )
A.(-∞,-3]B.(-3,+∞)C.[-5,-2]D.(-5,-3)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.设等差数列{an}的前n项和为Sn,且a2=2,S5=15,数列{bn}的前n项和为Tn,且$b_1^{\;}=\frac{1}{2}$,2nbn+1=(n+1)bn(n∈N*).
(1)求数列{an}的通项公式an及前n项和Sn
(2)求数列{bn}的通项公式bn及前n项和为Tn
(3)记集合$A=\{n|2{S_n}(2-{T_n})≥λ(n+2),n∈{N^*}\}$,若集合A中有且仅有5个元素,求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.某程序框如图所示,若输出的S=57,则判断框内应为(  )
A.k>6?B.k>5?C.k>4?D.k>3?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.某机构随机抽取50个参与某电视节目的选手的年龄作为样本进行研究,样本数据发组区间为[5,15],[15,25],[25,35],[34,45],[45,55],[55,65]由此得到如图所示的频率分布直方图.
(1)求a的值并估计参与该节目的选手年龄的平均值;
(2)根据以上的调查数据,从年龄在[5,15)和[55,65]内的选手中选出2人,求这2人年龄在同一组内的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知实数0<x1<x2<1,则下列不等式恒成立的是(  )
A.ex1-ex2<lnx1-lnx2B.ex1-ex2>lnx1-lnx2
C.x1ex2<x2ex1D.x1ex2>x2ex1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.(1)求值:0.064${\;}^{-\frac{1}{3}}$-(-$\frac{1}{8}$)0+16${\;}^{\frac{3}{4}}$+0.25${\;}^{\frac{1}{2}}$+2log36-log312;
(2)求值:cos$\frac{π}{3}$+tan$\frac{π}{4}$+3tan2$\frac{π}{6}$+sin$\frac{π}{2}$+cosπ+sin$\frac{3π}{2}$.

查看答案和解析>>

同步练习册答案