精英家教网 > 高中数学 > 题目详情
15.设等差数列{an}的前n项和为Sn,且a2=2,S5=15,数列{bn}的前n项和为Tn,且$b_1^{\;}=\frac{1}{2}$,2nbn+1=(n+1)bn(n∈N*).
(1)求数列{an}的通项公式an及前n项和Sn
(2)求数列{bn}的通项公式bn及前n项和为Tn
(3)记集合$A=\{n|2{S_n}(2-{T_n})≥λ(n+2),n∈{N^*}\}$,若集合A中有且仅有5个元素,求实数λ的取值范围.

分析 (1)由等差数列的性质S5=5a3=15,求得a3=3,由d=a3-a2=1,an=a2+(n-2)d=n,根据等差数列前n项和公式即可求得Sn
(2)$\frac{{{b_{n+1}}}}{b_n}=\frac{1}{2}•\frac{n+1}{n}$,采用“累乘法”即可求得${b_n}=\frac{n}{2^n}$,“错位相减法”即可求得前n项和为Tn
(3)由集合A可知:A=$\{n|\frac{{2{S_n}(2-{T_n})}}{n+2}≥λ,n∈{N^*}\}$,令$f(n)=\frac{{{n^2}+n}}{2^n}$,利用函数的单调性建立不等进行求解,实数λ的取值范围.

解答 解:(1)由等差数列性质可知,S5=5a3=15,即a3=3,由d=a3-a2=1,
∴an=a2+(n-2)d=n,…(2分)
∴${S_n}=\frac{{{n^2}+n}}{2}$.…(4分)
(2)由$\frac{{{b_{n+1}}}}{b_n}=\frac{1}{2}•\frac{n+1}{n}$得$\frac{b_2}{b_1}=\frac{1}{2}•\frac{2}{1},\frac{b_3}{b_2}=\frac{1}{2}•\frac{3}{2},\frac{b_4}{b_3}=\frac{1}{2}•\frac{4}{3},…,\frac{b_n}{{{b_{n-1}}}}=\frac{1}{2}•\frac{n}{n-1}$,
∴当n≥2时,$\frac{b_n}{b_1}={(\frac{1}{2})^{n-1}}n$,即${b_n}=\frac{n}{2^n}$,
当n=1时,${b_1}=\frac{1}{2}$,适合上式,
∴${b_n}=\frac{n}{2^n}$.…(6分)
${T_n}=\frac{1}{2^1}+\frac{2}{2^2}+\frac{3}{2^3}+…+\frac{n}{2^n}$,
①$\frac{1}{2}{T_n}=\frac{1}{2^2}+\frac{2}{2^3}+\frac{3}{2^4}+…+\frac{n-1}{2^n}+\frac{n}{{{2^{n+1}}}}$,②
①-②得,$\frac{1}{2}{T_n}=\frac{1}{2^1}+\frac{1}{2^2}+\frac{2}{2^3}+\frac{3}{2^4}+…+\frac{1}{2^n}-\frac{n}{{{2^{n+1}}}}=\frac{{\frac{1}{2}(1-\frac{1}{2^n})}}{{1-\frac{1}{2}}}-\frac{n}{{{2^{n+1}}}}=1-\frac{n+2}{{{2^{n+1}}}}$,
∴${T_n}=2-\frac{n+2}{2^n}$.…(10分)
(3)∵$A=\{n|2{S_n}(2-{T_n})≥λ(n+2),n∈{N^*}\}$=$\{n|\frac{{2{S_n}(2-{T_n})}}{n+2}≥λ,n∈{N^*}\}$…(11分)
由上面得$\frac{{2{S_n}(2-{T_n})}}{n+2}=\frac{{{n^2}+n}}{2^n}$,令$f(n)=\frac{{{n^2}+n}}{2^n}$,
∵$f(n+1)-f(n)=\frac{{{{(n+1)}^2}+n+1}}{{{2^{n+1}}}}-\frac{{{n^2}+n}}{2^n}=\frac{(n+1)(2-n)}{{{2^{n+1}}}}$,
∴当n≥3时,f(n+1)-f(n)<0,即f(n+1)<f(n)…(12分)
又f(1)=1,$f(\frac{3}{2})=\frac{3}{2}$,$f(3)=\frac{3}{2}$,$f(4)=\frac{5}{4}$,$f(5)=\frac{15}{16}$,$f(6)=\frac{21}{32}$…(14分)
∵集合A中有且仅有5个元素,
∴$\frac{{{n^2}+n}}{2^n}≥λ$,n∈N*解的个数为5,
∴$\frac{21}{32}<λ≤\frac{15}{16}$.…(16分)

点评 本题考查等差数列的性质,等差数列前n项和公式,考查“累乘法”及“错位相减法”的应用,考查数列与不等式相结合,考查计算能力,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.函数y=log5(1-x)的定义域是(  )
A.(1,+∞)B.(-∞,1)C.(-1,1)D.(-∞,1]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,在四棱锥P-ABCD中,PA⊥平面ABCD,底面ABCD是菱形,点O是对角线AC与BD的交点,M是PD上的点,且AB=2,∠BAD=60°.
(1)求证:平面PBD⊥平面PAC;
(2)当OM∥平面PAB且三棱锥M-BCD的体积等于$\frac{{\sqrt{3}}}{4}$时,求点C到面PBD的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设M,P是两个非空集合,定义M与P的差集为M-P={x|x∈M,x∉P}.已知A={1,3,5,7},B={2,3,5},则集合A-B的子集个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.下列四个函数中,以π为最小正周期的偶函数是(  )
A.y=tanxB.y=cos2xC.y=sin2xD.y=xsinx

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,一个由半圆和长方形组成的铁皮,已知长方形的边AD为半圆的直径,O为半圆的圆心,AB=1,BC=2,现要将此铁皮剪成一个等腰三角形PMN,且底边MN⊥BC,求剪下的铁皮△PMN的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.命题p:?x>0,x2-2x+1>0;命题q:?x0>0,${x}_{0}^{2}$-2x0+1≤0,下列选项真命题的是(  )
A.¬p∧qB.p∧qC.p∨¬qD.¬p∧¬q

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.某种产品的广告费支出x与销售额y(单位:百万元)之间有如下的对应数据:
x24568
y3040506070
(1)请画出上表数据的散点图;
(2)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程$\widehat{y}$=$\widehat{b}$x+$\widehat{a}$;
(3)要使这种产品的销售额突破一亿元,则广告费支出至少为多少百万元?(精确到0.1)

附表:$\left\{\begin{array}{l}{b=\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{x}_{i}^{2}-n{\overline{x}}^{2}}}\\{a=\overline{y}-b\overline{x}}\end{array}\right.$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.为了让学生了解环保,增强环保意识,某中学举行了一次环保知识竞赛,共有900名学生参加了这次竞赛.为了了解本次竞赛的成绩情况,从中抽取了部分学生的成绩(得分取正整数,满分为100分)进行统计.请你根据下面尚未完成的频率分布表和频率分布直方图,解答下列问题:
分组频数频率
[50,60)40.08
[60,70)80.16
[70,80)100.20
[80,90)160.32
[90,100]
合计
(1)填充频率分布表中的空格;
(2)不具体计算$\frac{频率}{组距}$,补全频率分布直方图.

查看答案和解析>>

同步练习册答案