精英家教网 > 高中数学 > 题目详情
10.下列四个函数中,以π为最小正周期的偶函数是(  )
A.y=tanxB.y=cos2xC.y=sin2xD.y=xsinx

分析 判断函数的周期以及函数的极小值即可.

解答 解:y=tanx,y=sin2x但是奇函数,所以A、C不正确;
y=cos2x最小正周期为π的偶函数,正确;
y=xsinx不是周期函数.
故选:B.

点评 本题考查三角函数的周期以及函数的奇偶性的判断,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=a(x-1)2+lnx,a∈R.
(Ⅰ)当a=-$\frac{1}{4}$时,求函数y=f(x)的单调区间;
(Ⅱ)若函数f(x)≤x-1对?x∈[1,+∞)恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.双曲线x2-y2=8的在左、右焦点分别是F1、F2,点Pn(xn,yn)(n=1,2,3,…)在其右支上,且满足|Pn+1F2|=|PnF1|,P1F2⊥F1F2,则x2016的值是8064.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=(2-a)(x-1)-2lnx(a∈R).
(1)若曲线g(x)=f(x)+x上点(1,g(1))处的切线过点(0,2),求函数g(x)的单调减区间;
(2)若函数y=f(x)在$({0,\frac{1}{2}})$上无零点,求a的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.要制作一个容积为8m3,高不低于3m,底部矩形长为2m的无盖长方体容器,已知该容器的底面造价是每平方米40元,侧面造价是每平方米20元,求该容器的最低总造价以及此时容器底部矩形的宽?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.设等差数列{an}的前n项和为Sn,且a2=2,S5=15,数列{bn}的前n项和为Tn,且$b_1^{\;}=\frac{1}{2}$,2nbn+1=(n+1)bn(n∈N*).
(1)求数列{an}的通项公式an及前n项和Sn
(2)求数列{bn}的通项公式bn及前n项和为Tn
(3)记集合$A=\{n|2{S_n}(2-{T_n})≥λ(n+2),n∈{N^*}\}$,若集合A中有且仅有5个元素,求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知(1-i)•z=i2013,那么复数z对应的点位于复平面内的(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知f(x)=sinx+lnx-kx(x>0,k>0)在(0,$\frac{π}{2}$)上单调递增,则k的取值范围是(0,$\frac{2}{π}$].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=-x2+3x-$\frac{1}{4}$,g(x)=x-(m+1)lnx-$\frac{m}{x}$,m∈R.
(1)求函数g(x)的极值;
(2)若对任意x1,x2∈[1,e],f(x1)-g(x2)≤1恒成立,求m的取值范围.

查看答案和解析>>

同步练习册答案