精英家教网 > 高中数学 > 题目详情

如图所示,已知圆C与y轴相切于点T(0,2),与x轴正半轴相交于两点M,N(点M在点N的右侧),且|MN|=3,已知椭圆D: +=1(a>b>0)的焦距等于2|ON|,且过点(,).

(1)求圆C和椭圆D的方程;

(2)若过点M斜率不为零的直线l与椭圆D交于A、B两点,求证:直线NA与直线NB的倾斜角互补.


 (1)解:设圆的半径为r,由题意,圆心为(r,2),

因为|MN|=3,

所以r2=()2+22=,r=,

故圆C的方程是(x-)2+(y-2)2=            ①

在①中,令y=0解得x=1或x=4,

所以N(1,0),M(4,0).

得c=1,a=2,

故b2=3.

所以椭圆D的方程为+=1.

(2)证明:设直线l的方程为y=k(x-4).

得(3+4k2)x2-32k2x+64k2-12=0                     ②

设A(x1,y1),B(x2,y2),

则x1+x2=,x1x2=.

当x1≠1,x2≠1时,

kAN+kBN=+

=+

=k·

=·[2x1x2-5(x1+x2)+8]

=·

=0.

所以kAN=-kBN,

当x1=1或x2=1时,k=±,

此时,对方程②,Δ=0,不合题意.

所以直线AN与直线BN的倾斜角互补.


练习册系列答案
相关习题

科目:高中数学 来源: 题型:


已知F1、F2是椭圆C: +=1(a>b>0)的两个焦点,P为椭圆C上一点,且,若△PF1F2的面积为9,则b=    . 

查看答案和解析>>

科目:高中数学 来源: 题型:


在平面直角坐标系xOy中,F是抛物线C:x2=2py(p>0)的焦点,M是抛物线C上位于第一象限内的任意一点,过M,F,O三点的圆的圆心为Q,点Q到抛物线C的准线的距离为.

(1)求抛物线C的方程;

(2)是否存在点M,使得直线MQ与抛物线C相切于点M?若存在,求出点M的坐标;若不存在,说明理由.

(3)若点M的横坐标为,直线l:y=kx+与抛物线C有两个不同的交点A,B,l与圆Q有两个不同的交点D,E,求当≤k≤2时,|AB|2+|DE|2的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:


已知F1,F2分别是椭圆E: +y2=1的左、右焦点,F1,F2关于直线x+y-2=0的对称点是圆C的一条直径的两个端点.

(1)求圆C的方程;

(2)设过点F2的直线l被椭圆E和圆C所截得的弦长分别为a,b.当ab最大时,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:


已知椭圆E: +=1(a>b>0),以抛物线y2=8x的焦点为顶点,且离心率为.

(1)求椭圆E的方程;

(2)若F为椭圆E的左焦点,O为坐标原点,直线l:y=kx+m与椭圆E相交于A、B两点,与直线x=-4相交于Q点,P是椭圆E上一点且满足=+,证明·为定值,并求出该值.

查看答案和解析>>

科目:高中数学 来源: 题型:


已知A,B分别是椭圆C1: +=1的左、右顶点,P是椭圆上异于A,B的任意一点,Q是双曲线C2: - =1上异于A,B的任意一点,a>b>0.

(1)若P(,),Q(,1),求椭圆C1的方程;

(2)记直线AP,BP,AQ,BQ的斜率分别是k1,k2,k3,k4,求证:k1·k2+k3·k4为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:


某商场有来自三个国家的进口奶制品,其中A国、B国、C国的奶制品分别有40种、10种、30种,现从中抽取一个容量为16的样本进行三聚氰胺检测,若采用分层抽样的方法抽取样本,则抽取来自B国的奶制品________种.

查看答案和解析>>

科目:高中数学 来源: 题型:


为征求个人所得税法修改建议,某机构对当地居民的月收入调查了10 000人,并根据所得数据画了样本的频率分布直方图(每个分组包括左端点,不包括右端点,如第一组表示收入在[1 000,1 500)).

(1)求居民月收入在[3 000,4 000)的频率;

(2)根据频率分布直方图估算样本数据的中位数;

(3)为了分析居民的收入与年龄、职业等方面的关系,必须按月收入再从这10 000人中用分层抽样方法抽出100人作进一步分析,则月收入在[2 500,3 000)的这段应抽多少人?

查看答案和解析>>

同步练习册答案