ÔÚÆ½ÃæÖ±½Ç×ø±êϵxOyÖÐ,FÊÇÅ×ÎïÏßC:x2=2py(p>0)µÄ½¹µã,MÊÇÅ×ÎïÏßCÉÏλÓÚµÚÒ»ÏóÏÞÄÚµÄÈÎÒâÒ»µã,¹ýM,F,OÈýµãµÄÔ²µÄÔ²ÐÄΪQ,µãQµ½Å×ÎïÏßCµÄ×¼ÏߵľàÀëΪ
.
(1)ÇóÅ×ÎïÏßCµÄ·½³Ì;
(2)ÊÇ·ñ´æÔÚµãM,ʹµÃÖ±ÏßMQÓëÅ×ÎïÏßCÏàÇÐÓÚµãM?Èô´æÔÚ,Çó³öµãMµÄ×ø±ê;Èô²»´æÔÚ,˵Ã÷ÀíÓÉ.
(3)ÈôµãMµÄºá×ø±êΪ
,Ö±Ïßl:y=kx+
ÓëÅ×ÎïÏßCÓÐÁ½¸ö²»Í¬µÄ½»µãA,B,lÓëÔ²QÓÐÁ½¸ö²»Í¬µÄ½»µãD,E,Çóµ±
¡Ük¡Ü2ʱ,|AB|2+|DE|2µÄ×îСֵ.
½â:(1)ÒÀÌâÒâÖªF
,Ô²ÐÄQÔÚÏß¶ÎOFµÄ´¹Ö±Æ½·ÖÏßy=
ÉÏ,
ÒòΪÅ×ÎïÏßCµÄ×¼Ïß·½³ÌΪy=-
,
ËùÒÔ
=
,
¼´p=1.
Òò´ËÅ×ÎïÏßCµÄ·½³ÌΪx2=2y.
(2)¼ÙÉè´æÔÚµãM
(x0>0)Âú×ãÌõ¼þ,Å×ÎïÏßCÔÚµãM´¦µÄÇÐÏßбÂÊΪy¡ä
=![]()
=x0,
ËùÒÔÖ±ÏßMQµÄ·½³ÌΪy-
=x0(x-x0).
Áîy=
µÃxQ=
+
.
ËùÒÔQ£¨
+
,
£©.
ÓÖ|QM|=|OQ|,
¹Ê£¨
-
£©2+£¨
-
£©2=£¨
+
£©2+
,
Òò´Ë£¨
-
£©2=
.
ÓÖx0>0,
ËùÒÔx0=
,´ËʱM(
,1).
¹Ê´æÔÚµãM(
,1),
ʹµÃÖ±ÏßMQÓëÅ×ÎïÏßCÏàÇÐÓÚµãM.
(3)µ±x0=
ʱ,ÓÉ(2)µÃQ£¨
,
£©,
¨‘QµÄ°ë¾¶Îªr=
=
,
ËùÒÔ¨‘QµÄ·½³ÌΪ£¨x-
£©2+£¨y-
£©2=
.
ÓÉ![]()
ÕûÀíµÃ2x2-4kx-1=0.
ÉèA,BÁ½µãµÄ×ø±ê·Ö±ðΪ(x1,y1),(x2,y2),
ÓÉÓÚ¦¤1=16k2+8>0,x1+x2=2k,x1x2=-
,
ËùÒÔ|AB|2=(1+k2)[(x1+x2)2-4x1x2]
=(1+k2)(4k2+2).
ÓÉ![]()
ÕûÀíµÃ(1+k2)x2-
x-
=0.
ÉèD,EÁ½µãµÄ×ø±ê·Ö±ðΪ(x3,y3),(x4,y4),
ÓÉÓÚ¦¤2=
+
>0,x3+x4=
,
x3x4=-
.
ËùÒÔ|DE|2=(1+k2)[(x3+x4)2-4x3x4]
=
+
.
Òò´Ë|AB|2+|DE|2=(1+k2)(4k2+2)+
+
.
Áî1+k2=t,
ÓÉÓÚ
¡Ük¡Ü2,
Ôò
¡Üt¡Ü5,
ËùÒÔ|AB|2+|DE|2=t(4t-2)+
+![]()
=4t2-2t+
+
,
Éèg(t)=4t2-2t+
+
,t¡Ê
,
ÒòΪg¡ä(t)=8t-2-
,
ËùÒÔµ±t¡Ê
ʱ,g¡ä(t)¡Ýg¡ä
=6,
¼´º¯Êýg(t)ÔÚt¡Ê
ÉÏÊÇÔöº¯Êý,
ËùÒÔµ±t=
ʱ,g(t)È¡µ½×îСֵ
,
Òò´Ë,µ±k=
ʱ,|AB|2+|DE|2È¡µ½×îСֵ
.
| Äê¼¶ | ¸ßÖÐ¿Î³Ì | Äê¼¶ | ³õÖÐ¿Î³Ì |
| ¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º
Ë«ÇúÏßx2-y2=1µÄ¶¥µãµ½Æä½¥½üÏߵľàÀëµÈÓÚ(¡¡¡¡)
(A)
(B)
(C)1 (D)![]()
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º
ÒÑÖª¶¯µãM(x,y)µ½Ö±Ïßl:x=4µÄ¾àÀëÊÇËüµ½µãN(1,0)µÄ¾àÀëµÄ2±¶.
(1)Ç󶯵ãMµÄ¹ì¼£CµÄ·½³Ì;
(2)¹ýµãP(0,3)µÄÖ±ÏßmÓë¹ì¼£C½»ÓÚA,BÁ½µã,ÈôAÊÇPBµÄÖеã,ÇóÖ±ÏßmµÄбÂÊ.
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º
ÉèÍÖÔ²
+y2=1µÄ×ó½¹µãΪF,PΪÍÖÔ²ÉÏÒ»µã,Æäºá×ø±êΪ
,Ôò|PF|µÈÓÚ(¡¡¡¡)
(A)
(B)
(C)
(D)![]()
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º
Èçͼ,F1,F2ÊÇÍÖÔ²C1:
+y2=1ÓëË«ÇúÏßC2µÄ¹«¹²½¹µã,A,B·Ö±ðÊÇC1,C2ÔÚµÚ¶þ¡¢ËÄÏóÏ޵Ĺ«¹²µã.ÈôËıßÐÎAF1BF2Ϊ¾ØÐÎ,ÔòC2µÄÀëÐÄÂÊÊÇ(¡¡¡¡)
![]()
(A)
(B)
(C)
(D)![]()
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º
Å×ÎïÏßC1:y=
x2(p>0)µÄ½¹µãÓëË«ÇúÏßC2:
-y2=1µÄÓÒ½¹µãµÄÁ¬Ïß½»C1ÓÚµÚÒ»ÏóÏ޵ĵãM.ÈôC1ÔÚµãM´¦µÄÇÐÏ߯½ÐÐÓÚC2µÄÒ»Ìõ½¥½üÏß,ÔòpµÈÓÚ(¡¡¡¡)
(A)
(B)
(C)
(D)![]()
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º
ÒÑ֪˫ÇúÏß
-
=1(a>0,b>0)µÄÒ»Ìõ½¥½üÏß·½³ÌÊÇy=
x,ËüµÄÒ»¸ö½¹µãÓëÅ×ÎïÏßy2=16xµÄ½¹µãÏàͬ,ÔòË«ÇúÏߵķ½³ÌΪ¡¡ .
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º
ÈçͼËùʾ,ÒÑÖªÔ²CÓëyÖáÏàÇÐÓÚµãT(0,2),ÓëxÖáÕý°ëÖáÏཻÓÚÁ½µãM,N(µãMÔÚµãNµÄÓÒ²à),ÇÒ|MN|=3,ÒÑÖªÍÖÔ²D:
+
=1(a>b>0)µÄ½¹¾àµÈÓÚ2|ON|,ÇÒ¹ýµã£¨
,
£©.
![]()
(1)ÇóÔ²CºÍÍÖÔ²DµÄ·½³Ì;
(2)Èô¹ýµãMбÂʲ»ÎªÁãµÄÖ±ÏßlÓëÍÖÔ²D½»ÓÚA¡¢BÁ½µã,ÇóÖ¤:Ö±ÏßNAÓëÖ±ÏßNBµÄÇãб½Ç»¥²¹.
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º
ΪÁ˽âij°àѧÉúϲ°®´òÀºÇòÊÇ·ñÓëÐÔ±ðÓйأ¬¶Ô¸Ã°à50ÃûѧÉú½øÐÐÁËÎʾíµ÷²é£¬µÃµ½ÁËÈçϵÄ2¡Á2ÁÐÁª±í£º
|
| ϲ°®´òÀºÇò | ²»Ï²°®´òÀºÇò | ºÏ¼Æ |
| ÄÐÉú | 20 | 5 | 25 |
| Å®Éú | 10 | 15 | 25 |
| ºÏ¼Æ | 30 | 20 | 50 |
ÔòÖÁÉÙÓÐ________µÄ°ÑÎÕÈÏΪϲ°®´òÀºÇòÓëÐÔ±ðÓйأ¿(ÇëÓðٷÖÊý±íʾ)
²é¿´´ð°¸ºÍ½âÎö>>
¹ú¼ÊѧУÓÅÑ¡ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com