精英家教网 > 高中数学 > 题目详情

已知动点M(x,y)到直线l:x=4的距离是它到点N(1,0)的距离的2倍.

(1)求动点M的轨迹C的方程;

(2)过点P(0,3)的直线m与轨迹C交于A,B两点,若A是PB的中点,求直线m的斜率.


解:(1)设M到直线l的距离为d,

根据题意,d=2|MN|.

由此得|4-x|=2,

化简得+=1,

所以,动点M的轨迹方程为+=1.

(2)法一 由题意,设直线m的方程为y=kx+3,A(x1,y1),B(x2,y2).

将y=kx+3代入+=1中,

有(3+4k2)x2+24kx+24=0,

其中,Δ=(24k)2-4×24(3+4k2)=96(2k2-3)>0,

由求根公式得,

x1+x2=-,        ①

x1x2=.          ②

又因A是PB的中点,

故x2=2x1,③

将③代入①,②,得

x1=-,

=,

可得=,

且k2>,

解得k=-或k=,

所以,直线m的斜率为-.

法二 由题意,设直线m的方程为y=kx+3,

A(x1,y1),B(x2,y2).

∵A是PB的中点,

∴x1=,①

y1=.②

+=1,③

+=1.④

联立①,②,③,④解得

即点B的坐标为(2,0)或(-2,0),

所以,直线m的斜率为-.


练习册系列答案
相关习题

科目:高中数学 来源: 题型:


函数f(x)=sin(πcos x)在区间[0,2π]上的零点个数是(  )

(A)3    (B)4    (C)5    (D)6

查看答案和解析>>

科目:高中数学 来源: 题型:


已知F1、F2为双曲线C: -y2=1的左、右焦点,点P在C上,∠F1PF2=60°,则P到x轴的距离为(  )

(A)    (B)   (C)    (D)

查看答案和解析>>

科目:高中数学 来源: 题型:


已知F1、F2是椭圆C: +=1(a>b>0)的两个焦点,P为椭圆C上一点,且,若△PF1F2的面积为9,则b=    . 

查看答案和解析>>

科目:高中数学 来源: 题型:


设F1,F2是椭圆E: +=1(a>b>0)的左、右焦点,P为直线x=上一点,△F2PF1是底角为30°的等腰三角形,则E的离心率为(  )

(A)   (B)   (C)   (D)

查看答案和解析>>

科目:高中数学 来源: 题型:


已知椭圆+=1(a>b>0),点P(a,a)在椭圆上.

(1)求椭圆的离心率;

(2)设A为椭圆的左顶点,O为坐标原点,若点Q在椭圆上且满足|AQ|=|AO|,求直线OQ的斜率的值.

查看答案和解析>>

科目:高中数学 来源: 题型:


椭圆+=1上有两个动点P、Q,E(3,0),EP⊥EQ,则·的最小值为(  )

(A)6    (B)3-    (C)9    (D)12-6

查看答案和解析>>

科目:高中数学 来源: 题型:


在平面直角坐标系xOy中,F是抛物线C:x2=2py(p>0)的焦点,M是抛物线C上位于第一象限内的任意一点,过M,F,O三点的圆的圆心为Q,点Q到抛物线C的准线的距离为.

(1)求抛物线C的方程;

(2)是否存在点M,使得直线MQ与抛物线C相切于点M?若存在,求出点M的坐标;若不存在,说明理由.

(3)若点M的横坐标为,直线l:y=kx+与抛物线C有两个不同的交点A,B,l与圆Q有两个不同的交点D,E,求当≤k≤2时,|AB|2+|DE|2的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:


某商场有来自三个国家的进口奶制品,其中A国、B国、C国的奶制品分别有40种、10种、30种,现从中抽取一个容量为16的样本进行三聚氰胺检测,若采用分层抽样的方法抽取样本,则抽取来自B国的奶制品________种.

查看答案和解析>>

同步练习册答案