精英家教网 > 高中数学 > 题目详情

已知双曲线-=1(a>0,b>0)的一条渐近线方程是y=x,它的一个焦点与抛物线y2=16x的焦点相同,则双曲线的方程为                      . 


- =1解析:由双曲线-=1(a>0,b>0)的一条渐近线方程为y=x得=,

∴b=a.

∵抛物线y2=16x的焦点为F(4,0),

∴c=4.

又∵c2=a2+b2,

∴16=a2+(a)2,

∴a2=4,b2=12.

∴所求双曲线的方程为-=1.


练习册系列答案
相关习题

科目:高中数学 来源: 题型:


已知F1、F2为双曲线C: -y2=1的左、右焦点,点P在C上,∠F1PF2=60°,则P到x轴的距离为(  )

(A)    (B)   (C)    (D)

查看答案和解析>>

科目:高中数学 来源: 题型:


椭圆+=1上有两个动点P、Q,E(3,0),EP⊥EQ,则·的最小值为(  )

(A)6    (B)3-    (C)9    (D)12-6

查看答案和解析>>

科目:高中数学 来源: 题型:


在平面直角坐标系xOy中,F是抛物线C:x2=2py(p>0)的焦点,M是抛物线C上位于第一象限内的任意一点,过M,F,O三点的圆的圆心为Q,点Q到抛物线C的准线的距离为.

(1)求抛物线C的方程;

(2)是否存在点M,使得直线MQ与抛物线C相切于点M?若存在,求出点M的坐标;若不存在,说明理由.

(3)若点M的横坐标为,直线l:y=kx+与抛物线C有两个不同的交点A,B,l与圆Q有两个不同的交点D,E,求当≤k≤2时,|AB|2+|DE|2的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:


已知双曲线-=1的右焦点与抛物线y2=12x的焦点重合,则该双曲线的焦点到其渐近线的距离等

于(  )

(A) (B)4 (C)3       (D)5

查看答案和解析>>

科目:高中数学 来源: 题型:


已知F1,F2分别是椭圆E: +y2=1的左、右焦点,F1,F2关于直线x+y-2=0的对称点是圆C的一条直径的两个端点.

(1)求圆C的方程;

(2)设过点F2的直线l被椭圆E和圆C所截得的弦长分别为a,b.当ab最大时,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:


已知椭圆E: +=1(a>b>0),以抛物线y2=8x的焦点为顶点,且离心率为.

(1)求椭圆E的方程;

(2)若F为椭圆E的左焦点,O为坐标原点,直线l:y=kx+m与椭圆E相交于A、B两点,与直线x=-4相交于Q点,P是椭圆E上一点且满足=+,证明·为定值,并求出该值.

查看答案和解析>>

科目:高中数学 来源: 题型:


某商场有来自三个国家的进口奶制品,其中A国、B国、C国的奶制品分别有40种、10种、30种,现从中抽取一个容量为16的样本进行三聚氰胺检测,若采用分层抽样的方法抽取样本,则抽取来自B国的奶制品________种.

查看答案和解析>>

科目:高中数学 来源: 题型:


已知盒子中有散落的黑白棋子若干粒,已知从中取出2粒都是黑子的概率是,从中取出2粒都是白子的概率是,现从中任意取出2粒恰好是同一色的概率是________.

查看答案和解析>>

同步练习册答案