分析 (1)先求导函数f′(x)=3x2-2ax+b,利用函数f(x)在x=-1和x=3时取得极值,可求a,b;
(2)当x∈[-2,6]时,f(x)<2|c|恒成立,即转化为f(x)的最小值小于2|c|即可.
解答 解:(1)∵函数f(x)在x=-1和x=3时取极值,∴-1,3是方程3x2-2ax+b=0的两根,
∴$\left\{\begin{array}{l}{-1+3=\frac{2}{3}a}\\{-1×3=\frac{b}{3}}\end{array}\right.$,∴$\left\{\begin{array}{l}{a=3}\\{b=-9}\end{array}\right.$;
(2)f(x)=x3-3x2-9x+c,f′(x)=3x2-6x-9,当x变化时,有下表
| x | (-∞,-1) | -1 | (-1,3) | 3 | (3,+∞) |
| f’(x) | + | 0 | - | 0 | + |
| f(x) | ↗ | Max c+5 | ↘ | Min c-27 | ↗ |
点评 本题主要考查利用导数研究函数的极值,最值,利用最值解决恒成立问题,要注意常规方法.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | f(a)<f(b)<f(c) | B. | f(a)<f(c)<f(b) | C. | f(b)<f(c)<f(a) | D. | f(c)<f(b)<f(a) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $(\frac{1}{2e-1},1)$ | B. | $(\frac{e^2}{{2{e^2}-1}},1)$ | C. | $[\frac{1}{2e-1},1)$ | D. | $[\frac{e^2}{{2{e^2}-1}},1)$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com