【题目】如图,在四棱锥P-ABCD中,PC⊥平面ABCD,点M为PB中点,底面ABCD为梯形,AB∥CD,AD⊥CD,AD=CD=PC=AB.
(1)证明:CM∥平面PAD;
(2)若四棱锥P-ABCD的体积为4,求点M到平面PAD的距离.
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在平面直角坐标系中,椭圆的参数方程为(为参数),以原点为极点, 轴正半轴为极轴建立极坐标系,直线的极坐标方程为.
(1)求经过椭圆右焦点且与直线垂直的直线的极坐标方程;
(2)若为椭圆上任意-点,当点到直线距离最小时,求点的直角坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,四棱锥P﹣ABCD中,PC⊥底面ABCD,PC=CD=2,E为AB的中点,底面四边形ABCD满足∠ADC=∠DCB=90°,AD=1,BC=3.
(Ⅰ)求证:平面PDE⊥平面PAC;
(Ⅱ)求直线PC与平面PDE所成角的正弦值;
(Ⅲ)求二面角D﹣PE﹣B的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的右焦点为,点在椭圆上.
(Ⅰ)求椭圆的方程;
(Ⅱ)点在圆上,且在第一象限,过作的切线交椭圆于两点,问: 的周长是否为定值?若是,求出定值;若不是,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某快递公司有两种发放薪水的方案:
方案一:底薪1800元,设每月送快递单,提成(单位:元)为
方案二:底薪2000元,设每月送快递单,提成(单位:元)为
以下该公司某职工小甲在2019年9月份(30天)送快递的数据,
日送快递单数 | 11 | 13 | 14 | 15 | 16 | 18 |
天数 | 4 | 5 | 12 | 3 | 5 | 1 |
(1)从小甲日送快递单数大于15的六天中抽取两天,求这两天他送的快递单数恰好都为16单的概率.
(2)请你利用所学的统计学知识为小甲9月份选择合适的发放薪水的方案,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某车站每天上午发出两班客车,每班客车发车时刻和发车概率如下:第一班车:在8:00,8:20,8:40发车的概率分别为,,;第二班车:在9:00,9:20,9:40发车的概率分别为,,.两班车发车时刻是相互独立的,一位旅客8:10到达车站乘车.求:
(1)该旅客乘第一班车的概率;
(2)该旅客候车时间(单位:分钟)的分布列.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com