【题目】已知椭圆
的右焦点为
,点
在椭圆上.
(Ⅰ)求椭圆的方程;
(Ⅱ)点
在圆
上,且
在第一象限,过
作
的切线交椭圆于
两点,问:
的周长是否为定值?若是,求出定值;若不是,说明理由.
科目:高中数学 来源: 题型:
【题目】为了解某校高三学生的视力情况,随机地抽查了该校100名高三学生的视力情况,得到频率分布直方图如下图,由于不慎将部分数据丢失,但知道前4组的频数成等比数列,后6组的频数成等差数列,设最大频率为a,视力在4.6到5.0之间的学生数为b,则a,b的值分别为 ( )
![]()
A. 0.27,78 B. 0.27,83 C. 2.7,78 D. 2.7,83
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥P-ABCD中,PC⊥平面ABCD,点M为PB中点,底面ABCD为梯形,AB∥CD,AD⊥CD,AD=CD=PC=
AB.
![]()
(1)证明:CM∥平面PAD;
(2)若四棱锥P-ABCD的体积为4,求点M到平面PAD的距离.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
:
的离心率为
,点
为左焦点,过点
作
轴的垂线交椭圆
于
、
两点,且
.
(1)求椭圆
的方程;
(2)在圆
上是否存在一点
,使得在点
处的切线
与椭圆
相交于
、
两点满足
?若存在,求
的方程;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,已知曲线
(
为参数),以坐标原点
为极点,
轴的非负半轴为极轴建立极坐标系,直线
的极坐标方程为:
.
(1)求直线
和曲线
的直角坐标方程;
(2)
,直线
和曲线
交于
、
两点,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某超市举办酬宾活动,单次购物超过
元的顾客可参与一次抽奖活动,活动规则如下:盒子中装有大小和形状完全相同的
个小球,其中
个红球、
个白球和
个黑球,从中不放回地随机抽取
个球,每个球被抽到的机会均等.每抽到
个红球记
分,每抽到
个白球记
分,每抽到
个黑球记
分.如果抽取
个球总得分
分可获得
元现金,总得分低于
分没有现金,其余得分可获得
元现金.
(1)设抽取
个球总得分为随机变量
,求随机变量
的分布列;
(2)设每位顾客一次抽奖获得现金
元,求
的数学期望.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com