【题目】已知函数
,若函数
有6个零点,则实数
的取值范围是_________.
【答案】![]()
【解析】
由题意首先研究函数
的性质,然后结合函数的性质数形结合得到关于a的不等式,求解不等式即可确定实数a的取值范围.
当
时,函数
在区间
上单调递增,
很明显
,且存在唯一的实数
满足
,
当
时,由对勾函数的性质可知函数
在区间
上单调递减,在区间
上单调递增,
结合复合函数的单调性可知函数
在区间
上单调递减,在区间
上单调递增,且当
时,
,
考查函数
在区间
上的性质,
由二次函数的性质可知函数
在区间
上单调递减,在区间
上单调递增,
函数
有6个零点,即方程
有6个根,
也就是
有6个根,即
与
有6个不同交点,
注意到函数
关于直线
对称,则函数
关于直线
对称,
绘制函数
的图像如图所示,
![]()
观察可得:
,即
.
综上可得,实数
的取值范围是
.
故答案为
.
科目:高中数学 来源: 题型:
【题目】已知抛物线
,焦点为
,直线
交抛物线
于
两点,
是线段
的中点,过
作
轴的垂线交抛物线
于点
.
(1)求抛物线
的焦点坐标;
(2)若抛物线
上有一点
到焦点
的距离为
,求此时
的值;
(3)是否存在实数
,使
是以
为直角顶点的直角三角形?若存在,求出
的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】从4名男同学中选出2人,6名女同学中选出3人,并将选出的5人排成一排.
(1)共有多少种不同的排法?
(2)若选出的2名男同学不相邻,共有多少种不同的排法?(用数字表示)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在平面直角坐标系
中,椭圆
的参数方程为
(
为参数),以原点
为极点,
轴正半轴为极轴建立极坐标系,直线
的极坐标方程为
.
(1)求经过椭圆
右焦点
且与直线
垂直的直线的极坐标方程;
(2)若
为椭圆
上任意-点,当点
到直线
距离最小时,求点
的直角坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】近年来,随着互联网的发展,诸如“滴滴打车”“神州专车”等网约车服务在我国各:城市迅猛发展,为人们出行提供了便利,但也给城市交通管理带来了一些困难.为掌握网约车在
省的发展情况,
省某调查机构从该省抽取了
个城市,分别收集和分析了网约车的
两项指标数
,数据如下表所示:
城市1 | 城市2 | 城市3 | 城市4 | 城市5 | |
|
|
|
|
|
|
|
|
|
|
|
|
经计算得:![]()
(1)试求
与
间的相关系数
,并利用
说明
与
是否具有较强的线性相关关系(若
,则线性相关程度很高,可用线性回归模型拟合);
(2)立
关于
的回归方程,并预测当
指标数为
时,
指标数的估计值.
附:相关公式:
,![]()
参考数据:![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的右焦点为
,点
在椭圆上.
(Ⅰ)求椭圆的方程;
(Ⅱ)点
在圆
上,且
在第一象限,过
作
的切线交椭圆于
两点,问:
的周长是否为定值?若是,求出定值;若不是,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】盒内有大小相同的9个球,其中2个红色球,3个白色球,4个黑色球.规定取出1个红色球得1分,取出1个白色球得0分,取出1个黑色球得
分,现从盒内任取3个球.
(Ⅰ)求取出的3个球中至少有一个红球的概率;
(Ⅱ)求取出的3个球得分之和恰为1分的概率;
(Ⅲ)设
为取出的3个球中白色球的个数,求
的分布列及期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某校从学生会宣传部6名成员(其中男生4人,女生2人)中,任选3人参加某省举办的“我看中国改革开放三十年”演讲比赛活动.
(1)设所选3人中女生人数为ξ,求ξ的分布列;
(2)求男生甲或女生乙被选中的概率;
(3)设“男生甲被选中”为事件A,“女生乙被选中”为事件B,求P(B)和P(B|A).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com