【题目】已知函数f(x)=
﹣axlnx(a∈R)在x=1处的切线方程为y=bx+1+
(b∈R).
(1)求a,b的值;
(2)证明:f(x)<
.
(3)若正实数m,n满足mn=1,证明:
+
<2(m+n).
【答案】
(1)解:函数f(x)=
﹣axlnx的导数为f′(x)=
﹣alnx﹣a,
由题意可得f′(1)=b=﹣a,f(1)=
=b+1+
,
解得a=1,b=﹣1;
(2)解:证明:f(x)=
﹣xlnx<
,即为
﹣
<xlnx,
令g(x)=
﹣
,g′(x)=
,
则g(x)在(0,1)递增,在(1,+∞)递减,
g(x)的最大值为g(1)=﹣
,当且仅当x=1时等号成立.
又令h(x)=xlnx,则h′(x)=1+lnx,
则h(x)在(0,
)递减,在(
,+∞)递增,
则h(x)的最小值为h(
)=﹣
,当且仅当x=
等号成立,
因此
﹣
<xlnx,即f(x)< ![]()
(3)解:证明:由(2)可得
﹣mlnm<
,即
﹣lnm<
,
两边同乘以e,可得
﹣elnm<
,
同理可得,
﹣elnn<
,
两式相加,可得:
<e(lnm+lnn)+2(m+n)=elnmn+
=2(m+n).
故
<2(m+n)
【解析】(1)求得f(x)的导数,可得斜率,解方程可得a,b;(2)由题意可得即证
﹣
<xlnx,令g(x)=
﹣
,求出导数,单调区间,可得最大值;又令h(x)=xlnx,求出最小值,即可得证;(3)由(2)可得
﹣mlnm<
,即
﹣lnm<
,两边乘以e,可得一不等式,同理可得,
﹣elnn<
,两式相加结合条件,即可得证.
【考点精析】认真审题,首先需要了解函数的最大(小)值与导数(求函数
在
上的最大值与最小值的步骤:(1)求函数
在
内的极值;(2)将函数
的各极值与端点处的函数值
,
比较,其中最大的是一个最大值,最小的是最小值).
科目:高中数学 来源: 题型:
【题目】已知曲线C1的参数方程为
(t为参数).以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=2cosθ. (Ⅰ)把C1的参数方程化为极坐标方程;
(Ⅱ)求C1与C2交点的极坐标(ρ≥0,0≤θ<2π).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}的前n项和
,数列{bn}的前n项和为Bn .
(1)求数列{an}的通项公式;
(2)设
,求数列{cn}的前n项和Cn;
(3)证明:
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C:
=1(a>b>0)的左、右焦点为F1 , F2 , 设点F1 , F2与椭圆短轴的一个端点构成斜边长为4的直角三角形.
(1)求椭圆C的标准方程;
(2)设A,B,P为椭圆C上三点,满足
=
+
,记线段AB中点Q的轨迹为E,若直线l:y=x+1与轨迹E交于M,N两点,求|MN|.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】非零向量
,
的夹角为
,且满足|
|=λ|
|(λ>0),向量组
,
,
由一个
和两个
排列而成,向量组
,
,
由两个
和一个
排列而成,若
+
+
所有可能值中的最小值为4
2 , 则λ= .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C:
=1(a>b>0)的焦距为4,其短轴的两个端点与长轴的一个端点构成正三角形.
(Ⅰ)求椭圆C的标准方程和长轴长;
(Ⅱ)设F为椭圆C的左焦点,P为直线x=﹣3上任意一点,过点F作直线PF的垂线交椭圆C于M,N,记d1 , d2分别为点M和N到直线OP的距离,证明:d1=d2 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com