【题目】平面上,点A、C为射线PM上的两点,点B、D为射线PN上的两点,则有
(其中S△PAB、S△PCD分别为△PAB、△PCD的面积);空间中,点A、C为射线PM上的两点,点B、D为射线PN上的两点,点E、F为射线PL上的两点,则有
=(其中VP﹣ABE、VP﹣CDF分别为四面体P﹣ABE、P﹣CDF的体积). ![]()
科目:高中数学 来源: 题型:
【题目】已知等差数列
和等比数列
,其中
的公差不为
.设
是数列![]()
的前
项和.若
、
、
是数列
的前
项,且
.
(Ⅰ)求数列
和
的通项公式;
(Ⅱ)若数列
为等差数列,求实数
;
(Ⅲ)构造数列
,
,
,
,
,
,
,
,
,…,
,
,
,
,…,
,…,
若该数列前
项和
,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的右焦点为F,过椭圆C中心的弦PQ长为2,且∠PFQ=90°,△PQF的面积为1.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设A1、A2分别为椭圆C的左、右顶点,S为直线
上一动点,直线A1S交椭圆C于点M,直线A2S交椭圆于点N,设S1、S2分别为△A1SA2、△MSN的面积,求
的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】三棱锥P﹣ABC中,底面△ABC满足BA=BC,
,P在面ABC的射影为AC的中点,且该三棱锥的体积为
,当其外接球的表面积最小时,P到面ABC的距离为( )
A.2
B.3
C.![]()
D.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(本小题满分12分)设
为定义在R上的偶函数,当
时,
.
(1)求函数
在R上的解析式;
(2)在直角坐标系中画出函数
的图象;
(3)若方程
-k=0有四个解,求实数k的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知曲线C:x2+y2+2kx+(4k+10)y+10k+20=0,其中k≠-1.
(1)求证:曲线C都表示圆,并且这些圆心都在同一条直线上;
(2)证明:曲线C过定点;
(3)若曲线C与x轴相切,求k的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆C:x2+(y-1)2=5,直线l:mx-y+1-m=0(m∈R).
(1)判断直线l与圆C的位置关系;
(2)设直线l与圆C交于A,B两点,若直线l的倾斜角为120°,求弦AB的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com