精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆 的右焦点为F,过椭圆C中心的弦PQ长为2,且∠PFQ=90°,△PQF的面积为1.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设A1、A2分别为椭圆C的左、右顶点,S为直线 上一动点,直线A1S交椭圆C于点M,直线A2S交椭圆于点N,设S1、S2分别为△A1SA2、△MSN的面积,求 的最大值.

【答案】解:(Ⅰ)弦PQ过椭圆中心,且∠PFQ=90°,则c=丨OF丨= 丨PQ丨=1,
不妨设P(x0 , y0)(x0 , y0>0),
∴,△PQF的面积= ×丨OF丨×2y0=y0=1,则x0=1,b=1,
a2=b2+c2=2,
∴椭圆方程为 +y2=1;
(Ⅱ)设S(2 ,t),直线A1S:x= y﹣ ,则
整理( +2)y2 y=0,解得y1=
同理,设直线A2S:x= y+
得( +2)y2+ y=0,解得y1=﹣
=丨 ×
× =
当且仅当t2+9=3t2+3,即t=± 时取“=”
【解析】(Ⅰ)由c=丨OF丨= 丨PQ丨=1,根据三角形的面积公式,即可求得b的值,a2=b2+c2=2,即可求得椭圆方程;(Ⅱ)设S点坐标,求直线A1S及A2S代入椭圆方程,求得M和N点坐标,根据三角形的面积公式及基本不等式的性质,即可求得 的最大值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】计算下列各式:

1

2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的方程为,双曲线的一条渐近线与轴所成的夹角为,且双曲线的焦距为.

(1)求椭圆的方程;

(2)设分别为椭圆的左,右焦点,过作直线 (与轴不重合)交椭圆于 两点,线段的中点为,记直线的斜率为,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知下列命题:

意味着每增加一个单位,平均增加8个单位

投掷一颗骰子实验,有掷出的点数为奇数和掷出的点数为偶数两个基本事件

互斥事件不一定是对立事件,但对立事件一定是互斥事件

在适宜的条件下种下一颗种子,观察它是否发芽,这个实验为古典概型

其中正确的命题有__________________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知m>0, .

(1) 若p是q的充分不必要条件,求实数m的取值范围;

(2) 若m=5,“”为真命题,“”为假命题,求实数x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知极点为直角坐标系的原点,极轴为x轴正半轴且单位长度相同的极坐标系中曲线C1:ρ=1, (t为参数).
(Ⅰ)求曲线C1上的点到曲线C2距离的最小值;
(Ⅱ)若把C1上各点的横坐标都扩大为原来的2倍,纵坐标扩大为原来的 倍,得到曲线 .设P(﹣1,1),曲线C2 交于A,B两点,求|PA|+|PB|.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】平面上,点A、C为射线PM上的两点,点B、D为射线PN上的两点,则有 (其中SPAB、SPCD分别为△PAB、△PCD的面积);空间中,点A、C为射线PM上的两点,点B、D为射线PN上的两点,点E、F为射线PL上的两点,则有 =(其中VPABE、VPCDF分别为四面体P﹣ABE、P﹣CDF的体积).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知过A(0,1)和且与x轴相切的圆只有一个,求的值及圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ex﹣ax+a(a∈R),其中e为自然对数的底数.
(1)讨论函数y=f(x)的单调性;
(2)函数y=f(x)的图象与x轴交于A(x1 , 0),B(x2 , 0)两点,x1<x2 , 点C在函数y=f(x)的图象上,且△ABC为等腰直角三角形,记 ,求at﹣(a+t)的值.

查看答案和解析>>

同步练习册答案