精英家教网 > 高中数学 > 题目详情
11.已知复数z=$\frac{1-\sqrt{3}i}{1+i}$,则z2的虚部为(  )
A.-iB.$\sqrt{3}$iC.-$\sqrt{3}$D.1

分析 直接利用已知条件化简复数为:a+bi的形式,即可得到结果.

解答 解:复数z=$\frac{1-\sqrt{3}i}{1+i}$,则z2=$(\frac{1-\sqrt{3}i}{1+i})^{2}$=$\frac{-2-2\sqrt{3}i}{2i}$=$\frac{-1-\sqrt{3}i}{i}$=$\frac{(-1-\sqrt{3}i)i}{i•i}$=-$\sqrt{3}+i$.
z2的虚部为:1.
故选:D.

点评 本题考查复数的代数形式混合运算,复数的基本概念,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.如图在△ABC中,AB=5,cos∠ABC=$\frac{1}{5}$.
(I)若BC=4,求△ABC的面积;
(II)若D为AC边的中点,且BD=$\frac{7}{2}$,求边BC的长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.设x,y满足约束条件$\left\{\begin{array}{l}3x+y-2\;≤\;0\;\\ y-x\;≤\;2\;\\ y\;≥\;-x-1\;,\;\;\end{array}\right.$则z=y-2x的最大值(  )
A.$\frac{7}{2}$B.2C.3D.$\frac{11}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$满足|$\overrightarrow{a}$|=2,|$\overrightarrow{b}$|=4,<$\overrightarrow{a}$,$\overrightarrow{b}$>=$\frac{2π}{3}$,求|$\overrightarrow{a}$-$\overrightarrow{b}$|和<$\overrightarrow{a}$,$\overrightarrow{a}$-$\overrightarrow{b}$>的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.函数f(x)=1+4cosx-4sin2x,x∈[-$\frac{π}{4}$,$\frac{2π}{3}$],有(  )
A.最大值0,最小值-8B.最大值5,最小值-4
C.最大值5,最小值-3D.最大值2$\sqrt{2}$-1,最小值-3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知点A(2,4),B(6,-4),点P在直线3x-4y+3=0上,若满足PA2+PB2=λ的点P有且仅有1个,则实数λ的值为58.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.在△ABC中,若2sinA+sinB=$\sqrt{3}$sinC,则角A的取值范围是(0,$\frac{π}{6}$].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,四棱锥P-ABCD的底面是直角梯形,AB∥CD,AB⊥AD,△PAB和△PAD是两个边长为2的正三角形,DC=4,点O为BD的中点,E为PA的中点.
(1)求证:PO⊥OA;
(2)求证:OE∥平面PDC;
(3)求直线CB与平面PDC所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=$\left\{\begin{array}{l}{{x}^{2}+3ax+{a}^{2}-3,(x<0)}\\{2{e}^{x}-(x-a)^{2}+3,(x>0)}\end{array}\right.$,a∈R.
(Ⅰ)若函数y=f(x)在x=1处取得极值,求a的值;
(Ⅱ)若函数y=f(x)的图象上存在两点关于原点对称,求a的范围;
(Ⅲ)当x≥2时,记g(x)=f(x)+(x-a)2+(a-x)3-3+6ex,若g(x)≥0恒成立,求a的取值范围.

查看答案和解析>>

同步练习册答案