分析 (1)利用同角三角函数的关系求出sin∠ABC,代入三角形的面积公式计算;
(2)$\overrightarrow{BD}$=$\frac{1}{2}$($\overrightarrow{BA}+\overrightarrow{BC}$),两边平方即可解出|BC|.
解答 解:(Ⅰ)在△ABC中,∵cos∠ABC=$\frac{1}{5}$.∴sin∠ABC=$\frac{2\sqrt{6}}{5}$.
∴S△ABC=$\frac{1}{2}AB•BC•sin∠ABC$=$\frac{1}{2}×5×4×\frac{2\sqrt{6}}{5}$=4$\sqrt{6}$.
(Ⅱ)∵D为AC边的中点,∴$\overrightarrow{BD}$=$\frac{1}{2}$($\overrightarrow{BA}+\overrightarrow{BC}$),
∴${\overrightarrow{BD}}^{2}$=$\frac{1}{4}$(${\overrightarrow{BA}}^{2}$+${\overrightarrow{BC}}^{2}$+2$\overrightarrow{BA}•\overrightarrow{BC}$),即:$\frac{49}{4}$=$\frac{1}{4}$(25+|BC|2+2|BC|).
解得:|BC|=4.
点评 本题考查了三角形的面积公式,向量在几何在的应用,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | 7,2,$\frac{3\sqrt{5}}{7}$ | B. | 14,4,$\frac{3\sqrt{5}}{7}$ | C. | 7,2,$\frac{\sqrt{5}}{7}$ | D. | 14,4,-$\frac{\sqrt{5}}{7}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -i | B. | $\sqrt{3}$i | C. | -$\sqrt{3}$ | D. | 1 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com