精英家教网 > 高中数学 > 题目详情
16.已知平面区域P:$\left\{\begin{array}{l}x≥0\\ y≥1\\ x-y+3≥0\end{array}$.设圆C:(x-a)2+(y-b)2=2,若圆心C∈P且圆C与直线x+y-7=0相切,则z=2a-b的最大值为15.

分析 作出不等式组对应的平面区域,利用圆C与x轴相切,得到b=1为定值,此时利用数形结合确定a的取值即可得到结论

解答 解:作出不等式组对应的平面区域如图:
圆心为(a,b),半径为$\sqrt{2}$,∵圆心C∈P,且圆C与直线x+y-7=0相切,
如图,当直线b=2a-z点C时-z最小,z最大,由$\left\{\begin{array}{l}{x-y-3=0}\\{x+y-9=0}\end{array}\right.$得到D(8,1),
∴z=2a-b的最大值为2×8-1=15;
故答案为:15.

点评 本题主要考查了线性规划的应用,利用数形结合是解决线性规划题目的常用方法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.求值:
(1)5cos180°-3sin90°+2tan0°-6sin270°;
(2)cos$\frac{π}{2}$-tan0+$\frac{1}{3}$tan2π-sin$\frac{3π}{2}$-cosπ.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,正方形OBHD是由四个边长为1的正方形拼成.
(1)求$\overrightarrow{OG}$与$\overrightarrow{OH}$夹角的余弦值;
(2)求tan(∠GOA+∠HOB)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.1.00310旳近似值是1.03.(精确到0.01)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+y2=1(a>1),过直线l:x=2上一点P作椭圆的切线,切点为A,当P点在x轴上时,切线PA的斜率为±$\frac{{\sqrt{2}}}{2}$.
(Ⅰ)求椭圆的方程;
(Ⅱ)设O为坐标原点,求△POA面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图在△ABC中,AB=5,cos∠ABC=$\frac{1}{5}$.
(I)若BC=4,求△ABC的面积;
(II)若D为AC边的中点,且BD=$\frac{7}{2}$,求边BC的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.在△ABC中,内角A,B,C的对边分别是a,b,c.
(1)D是BC上的点,AD平分∠BAC,△ABD是△ADC面积的2倍,AD=1,CD=$\frac{{\sqrt{2}}}{2}$,求b边的值;
(2)若a+b+c=8,若sinCcos2$\frac{B}{2}$+sinBcos2$\frac{C}{2}$=2sinA,△ABC的面积S=$\frac{9}{2}$sinA,求边c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若$\overrightarrow a$=(x,2),$\overrightarrow b$=(-3,5),且$\overrightarrow a$与$\overrightarrow b$的夹角为锐角,则实数x的取值范围是(  )
A.(-∞,$\frac{10}{3}$)B.(-∞,$\frac{10}{3}$]C.($\frac{10}{3}$,+∞)D.(-∞,-$\frac{6}{5}$)∪(-$\frac{6}{5}$,$\frac{10}{3}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.函数f(x)=1+4cosx-4sin2x,x∈[-$\frac{π}{4}$,$\frac{2π}{3}$],有(  )
A.最大值0,最小值-8B.最大值5,最小值-4
C.最大值5,最小值-3D.最大值2$\sqrt{2}$-1,最小值-3

查看答案和解析>>

同步练习册答案