| A. | (-∞,$\frac{10}{3}$) | B. | (-∞,$\frac{10}{3}$] | C. | ($\frac{10}{3}$,+∞) | D. | (-∞,-$\frac{6}{5}$)∪(-$\frac{6}{5}$,$\frac{10}{3}$) |
分析 两个向量在不共线的条件下,夹角为锐角的充要条件是它们的数量积大于零.由此列出不等式组,再解出这个不等式组,所得解集即为实数x的取值范围.
解答 解:由题意,可得 $\overrightarrow a$•$\overrightarrow b$=-3x+2×5>0,且5x+2×3≠0,
∴x<$\frac{10}{3}$,且 x≠-$\frac{6}{5}$,
故实数x的取值范围为(-∞,-$\frac{6}{5}$)∪(-$\frac{6}{5}$,$\frac{10}{3}$),
故选:D.
点评 本题考查了向量的数量积、两个向量共线的关系等知识点,属于基础题.在解决两个向量夹角为锐角(钝角)的问题时,千万要注意两个向量不能共线,否则会有遗漏而致错.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -2 | B. | 2 | C. | -1 | D. | 1 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com