精英家教网 > 高中数学 > 题目详情
17.解下列不等式:
(1)2x2+x-1<0
(2)$\frac{x-1}{x-2}$<2.

分析 (1)求出2x2+x-1=0的两根,即可得到不等式的解集,
(2)原不等式转化为(x-3)(x-2)>0,解得即可.

解答 解:(1)2x2+x-1=0的两根为${x_1}=-1,{x_2}=\frac{1}{2}$,
∴原不等式的解集为$\left\{{x|-1<x<\frac{1}{2}}\right\}$;
(2)原不等式可变形为$\frac{x-3}{x-2}>0$,
即(x-3)(x-2)>0,
∴原不等式的解集为{x|x<2或x>3}.

点评 本题考查了不等式的解法,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.如图,正方形OBHD是由四个边长为1的正方形拼成.
(1)求$\overrightarrow{OG}$与$\overrightarrow{OH}$夹角的余弦值;
(2)求tan(∠GOA+∠HOB)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.在△ABC中,内角A,B,C的对边分别是a,b,c.
(1)D是BC上的点,AD平分∠BAC,△ABD是△ADC面积的2倍,AD=1,CD=$\frac{{\sqrt{2}}}{2}$,求b边的值;
(2)若a+b+c=8,若sinCcos2$\frac{B}{2}$+sinBcos2$\frac{C}{2}$=2sinA,△ABC的面积S=$\frac{9}{2}$sinA,求边c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若$\overrightarrow a$=(x,2),$\overrightarrow b$=(-3,5),且$\overrightarrow a$与$\overrightarrow b$的夹角为锐角,则实数x的取值范围是(  )
A.(-∞,$\frac{10}{3}$)B.(-∞,$\frac{10}{3}$]C.($\frac{10}{3}$,+∞)D.(-∞,-$\frac{6}{5}$)∪(-$\frac{6}{5}$,$\frac{10}{3}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.复数z=-3+i在复平面上对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.设x,y满足约束条件$\left\{\begin{array}{l}3x+y-2\;≤\;0\;\\ y-x\;≤\;2\;\\ y\;≥\;-x-1\;,\;\;\end{array}\right.$则z=y-2x的最大值(  )
A.$\frac{7}{2}$B.2C.3D.$\frac{11}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.若函数满足f(x)=x,把此时的实数x称为函数y=f(x)的不动点.
(1)若函数y=xm-3的一个不动点是2,求m的值;
(2)若函数g(x)=x2+(a-4)x-3b是区间[b-a,b]上的偶函数
①求a、b的值,并求出这个函数的不动点;
②判断函数F(x)=g(x+1)-g(x-1)的奇偶性.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.函数f(x)=1+4cosx-4sin2x,x∈[-$\frac{π}{4}$,$\frac{2π}{3}$],有(  )
A.最大值0,最小值-8B.最大值5,最小值-4
C.最大值5,最小值-3D.最大值2$\sqrt{2}$-1,最小值-3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=lnx.
(1)若直线y=2x+p(p∈R)是函数y=f(x)图象的一条切线,求实数p的值;
(2)若函数g(x)=x-$\frac{m}{x}$-2f(x)(m∈R)有两个极值点x1,x2,且x1<x2
①求实数m的取值范围;
②证明:g(x2)<x2-1.

查看答案和解析>>

同步练习册答案