分析 (1)求出向量的坐标,通过向量的数量积求解夹角即可.
(2)利用两角和与差的正切函数化简求解即可.
解答 解:(1)由题意可得:$\overrightarrow{OG}$=($\frac{1}{2}$,1)与$\overrightarrow{OH}$=(1,1).
$\overrightarrow{OG}$与$\overrightarrow{OH}$夹角的余弦值为:$\frac{\overrightarrow{OG}•\overrightarrow{OH}}{|\overrightarrow{OG}||\overrightarrow{OH}|}$=$\frac{\frac{1}{2}+1}{\sqrt{(\frac{1}{2})^{2}+1}•\sqrt{1+1}}$=$\frac{3}{\sqrt{10}}$=$\frac{3\sqrt{10}}{10}$.
(2)由题意,tan∠GOA=2,tan∠HOB=1,
tan(∠GOA+∠HOB)=$\frac{2+1}{1-2×1}$=-3.
点评 本题考查向量在几何中的应用,向量的数量积的应用,考查计算能力.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{10}$ | B. | $\frac{\sqrt{10}}{2}$ | C. | $\sqrt{5}$ | D. | 5 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com